Preview

Yakut Medical Journal

Advanced search

Biological markers in predicting the course of spinal muscular atrophy and their importance in organizing medical care

https://doi.org/10.25789/YMJ.2023.84.28

Abstract

А correlation between the levels of blood biomarkers and clinical manifestations of SMA in patients of the main regional healthcare institution of the Samara region was carried out. Differences in creatinine, creatine phosphokinase, and lactate dehydrogenase levels among patient groups and their association with motor impairment did not show statistical significance.

Differences in CPK levels between groups may be related to age, weight, gender, and levels of physical activity of patients. The data obtained from the study of the history of repeated hospitalizations do not provide reliable information due to the limited sample and heterogeneity of the data. The results of this work indicate the ineffectiveness of assessing the levels of creatinine, CPK and LDH in order to monitor and predict the course of SMA, as well as the inappropriateness of repeating these laboratory studies in patients with SMA 5q.

About the Authors

A. Ya. Gaiduk
ICERN, Samara State Medical University
Russian Federation

 Gaiduk Arseniy Yanovich – Head of the laboratory, International Centre for Education and Research in Neuropsychiatry

Samara



T. S. Syunyakov
ICERN, Samara State Medical University
Russian Federation

Syunyakov Timur Sergeevich – PhD, senior researcher of the International Centre for Education and Research in Neuropsychiatry

 Scopus ID: 35773697500



A. V. Gazheva
SBI Scientific Research Institute of Health Organization and Medical Management of the Department of Health Moscow
Russian Federation

Gazheva Anastasia Viktorovna – PhD, Associate Professor, head of the Department  



E. F. Makhanova
State Medical Institution S.M. Kirov City Polyclinic No. 1
Russian Federation

Makhanova  Elena Fedorovna – neurologist 

 Ulyanovsk



Ya. V. Vlasov
Federal State Budgetary Educational Institution of Samara State Medical University
Russian Federation

Vlasov  Yan Vladimirovich – MD, Professor 

Samara



References

1. Araujo, A. p., Araujo, M., & Swoboda, K.J. (2009). Vascular perfusion abnormalities in infants with spinal muscular atrophy. The Journal of pediatrics, 155(2), 292–294. https://doi.org/10.1016/j.jpeds.2009.01.071

2. Kimizu, T., Ida, S., Okamoto, K., Awano, H., Niba, E., Wijaya, Y., Okazaki, S., Shimomura, H., Lee, T., Tominaga, K., Nabatame, S., Saito, T., Hamazaki, T., Sakai, N., Saito, K., Shintaku, H., Nozu, K., Takeshima, Y., Iijima, K., Nishio, H., Shinohara, M. (2021). Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan. International journal of neonatal screening, 7(3), 45. https://doi.org/10.3390/ijns7030045

3. Verhaart, I., Robertson, A., Wilson, I.J., Aartsma-Rus, A., Cameron, S., Jones, C.C., Cook, S.F., & Lochmüller, H. (2017). Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - a literature review. Orphanet journal of rare diseases, 12(1), 124. https://doi.org/10.1186/s13023-017-0671-8

4. Singh, R.N., Howell, M.D., Ottesen, E.W. Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech. 2017 Mar;1860(3):299-315. https://doi.org/10.1016/j.bbagrm.2016.12.008 Epub 2017 Jan 15.

5. Hao le, T., Duy, P.Q., An, M., Talbot, J., Iyer, C.C., Wolman, M., & Beattie, C.E. (2017). HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation. The Journal of neuroscience: the official journal of the Society for Neuroscience, 37(48), 11559–11571. https://doi.org/10.1523/JNEUROSCI.1528-17.2017

6. Giavazzi A, Setola V, Simonati A, Battaglia G (March 2006). "Neuronal-specific roles of the survival motor neuron protein: evidence from survival motor neuron expression patterns in the developing human central nervous system". Journal of Neuropathology and Experimental Neurology. 65 (3): 267–77. https://doi.org/10.1097/01.jnen.0000205144.54457.a3

7. Singh NN, Shishimorova M, Cao LC, Gangwani L, Singh RN (2009). "A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy". RNA Biology. 6 (3): 341–50. https://doi.org/10.4161/rna.6.3.8723

8. Hendrickson, B.C., Donohoe, C., Akmaev, V.R., Sugarman, E.A., Labrousse, P., Boguslavskiy, L., Flynn, K., Rohlfs, E.M., Walker, A., Allitto, B., Sears, C., Scholl, T. Differences in SMN1 allele frequencies among ethnic groups within North America. (Letter) J. Med. Genet. 46: 641-644, 2009. https://doi.org/10.1136/jmg.2009.066969

9. Jedrzejowska M, Milewski M, Zimowski J, Borkowska J, Kostera-Pruszczyk A, Sielska D, Jurek M, Hausmanowa-Petrusewicz I (2009). "Phenotype modifiers of spinal muscular atrophy: the number of SMN2 gene copies, deletion in the NAIP gene and probably gender influence the course of the disease". Acta Biochimica Polonica. 56 (1): 103–8.

10. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M (January 1995). "Identification and characterization of a spinal muscular atrophy-determining gene". Cell. 80 (1): 155–65. https://doi.org/10.1016/0092-8674(95)90460-3

11. Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK, Wilhelmsen KC, Daniels R, Davies KE, Leppert M, Ziter F, Wood D (April 1990). "Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3". Nature. 344 (6266): 540–1 https://doi.org/10.1038/344540a0

12. Hong, J.M., Zhao, M., He, J., Huang, X.J., Zhao, Z.Y., Chen, W.J., Wang, N., & Li, J.J. (2020). Genetic screening method for analyzing survival motor neuron copy number in spinal muscular atrophy by multiplex ligation-dependent probe amplification and droplet digital polymerase chain reaction. Chinese medical journal, 133(20), 2510–2511. https://doi.org/10.1097/CM9.0000000000001102

13. Mercuri E., Finkel R.S., Muntoni F., Wirth B., Montes J., Main M., Mazzone E.S, Vitale M., Snyder B., Quijano-Roy S., Bertini E., Davis R.H., Meyer O.H., Simonds A.K., Schroth M.K., Graham R.J., Kirschner J., Iannaccone S.T., Crawford T.O., Woods S., Qian Y., Sejersen T., SMA Care Group. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders. 2018 Feb;28(2):103-115. https://doi.org/10.1016/j.nmd.2017.11.005.

14. Feng Y, Ge X, Meng L, Scull J, Li J, Tian X, Zhang T, Jin W, Cheng H, Wang X, Tokita M, Liu P, Mei H, Wang Y, Li F, Schmitt ES, Zhang WV, Muzny D, Wen S, Chen Z, Yang Y, Beaudet AL, Liu X, Eng CM, Xia F, Wong LJ, Zhang J. The next generation of population-based spinal muscular atrophy carrier screening: comprehensive pan-ethnic SMN1 copy-number and sequence variant analysis by massively parallel sequencing. Genetics in Medicine 19, 936–944 (2017). https://doi.org/10.1038/gim.2016.215

15. Lopez-Lopez, D., Loucera, C., Carmona, R., Aquino, V., Salgado, J., Pasalodos, S., Miranda, M., Alonso, Á., & Dopazo, J. (2020). SMN1 copy-number and sequence variant analysis from next-generation sequencing data. Human mutation, 41(12), 2073–2077. https://doi.org/10.1002/humu.24120

16. Alves, C., Zhang, R., Johnstone, A.J., Garner, R., Nwe, P.H., Siranosian, J.J., & Swoboda, K.J. (2020). Serum creatinine is a biomarker of progressive denervation in spinal muscular atrophy. Neurology, 94(9), e921–e931. https://doi.org/10.1212/WNL.0000000000008762

17. Freigang, M., Wurster, C.D., Hagenacker, T., Stolte, B., Weiler, M., Kamm, C., Schreiber-Katz, O., Osmanovic, A., Petri, S., Kowski, A., Meyer, T., Koch, J.C., Cordts, I., Deschauer, M., Lingor, P., Aust, E., Petzold, D., Ludolph, A. C., Falkenburger, B., Hermann, A., Günther, R. (2021). Serum creatine kinase and creatinine in adult spinal muscular atrophy under nusinersen treatment. Annals of clinical and translational neurology, 8(5), 1049–1063. https://doi.org/10.1002/acn3.51340

18. Yuan, A., Rao, M.V., Veeranna, & Nixon, R. A. (2017). Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harbor perspectives in biology, 9(4), a018309. https://doi.org/10.1101/cshperspect.a018309

19. Kobayashi, D.T., Shi, J., Stephen, L., Ballard, K.L., Dewey, R., Mapes, J., Chung, B., McCarthy, K., Swoboda, K.J., Crawford, T.O., Li, R., Plasterer, T., Joyce, C., Biomarkers for Spinal Muscular Atrophy Study Group, Chung, W.K., Kaufmann, P., Darras, B.T., Finkel, R.S., Sproule, D.M., Martens, W.B., Chen, K.S. (2013). SMAMAP: a plasma protein panel for spinal muscular atrophy. PloS one, 8(4), e60113. https://doi.org/10.1371/journal.pone.0060113

20. Kolb, S.J., Coffey, C.S., Yankey, J.W., Krosschell, K., Arnold, W.D., Rutkove, S.B., Swoboda, K.J., Reyna, S.P., Sakonju, A., Darras, B.T., Shell, R., Kuntz, N., Castro, D., Iannaccone, S. T., Parsons, J., Connolly, A.M., Chiriboga, C.A., McDonald, C., Burnette, W.B., Werner, K. NeuroNEXT Clinical Trial Network and on behalf of the NN101 SMA Biomarker Investigators (2016). Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Annals of clinical and translational neurology, 3(2), 132–145. https://doi.org/10.1002/acn3.283

21. Alves, C., Zhang, R., Johnstone, A.J., Garner, R., Nwe, P.H., Siranosian, J.J., & Swoboda, K.J. (2020). Serum creatinine is a biomarker of progressive denervation in spinal muscular atrophy. Neurology, 94(9), e921–e931. https://doi.org/10.1212/WNL.0000000000008762

22. Querin, G., Lenglet, T., Debs, R., Stojkovic, T., Behin, A., Salachas, F., Le Forestier, N., Amador, M., Lacomblez, L., Meininger, V., Bruneteau, G., Laforêt, P., Blancho, S., Marchand-Pauvert, V., Bede, P., Hogrel, J.Y., & Pradat, P.F. (2018). The motor unit number index (MUNIX) profile of patients with adult spinal muscular atrophy. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 129(11), 2333–2340. https://doi.org/10.1016/j.clinph.2018.08.025

23. Weng, W.C., Hsu, Y.K., Chang, F.M., Lin, C.Y., Hwu, W.L., Lee, W.T., Lee, N.C., & Chien, Y.H. (2021). CMAP changes upon symptom onset and during treatment in spinal muscular atrophy patients: lessons learned from newborn screening. Genetics in medicine : official journal of the American College of Medical Genetics, 23(2), 415–420. https://doi.org/10.1038/s41436-020-00987-w

24. Kariyawasam, D., D'Silva, A., Howells, J., Herbert, K., Geelan-Small, P., Lin, C.S., & Farrar, M.A. (2020). Motor unit changes in children with symptomatic spinal muscular atrophy treated with nusinersen. Journal of neurology, neurosurgery, and psychiatry, 92(1), 78–85. Advance online publication. https://doi.org/10.1136/jnnp-2020-324254

25. Nandedkar, S.D., Barkhaus, P.E., & Stålberg, E. V. (2010). Motor unit number index (MUNIX): principle, method, and findings in healthy subjects and in patients with motor neuron disease. Muscle & nerve, 42(5), 798–807. https://doi.org/10.1002/mus.21824


Review

For citations:


Gaiduk A.Ya., Syunyakov T.S., Gazheva A.V., Makhanova E.F., Vlasov Ya.V. Biological markers in predicting the course of spinal muscular atrophy and their importance in organizing medical care. Yakut Medical Journal. 2023;(4):117-122. https://doi.org/10.25789/YMJ.2023.84.28

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)