Preview

Yakut Medical Journal

Advanced search

Modern methods of experimental evaluation of biomechanical properties

https://doi.org/10.25789/YMJ.2024.86.17

Abstract

The review presents a description of methods and results of various experimental studies of corneal biomechanical properties: the technique of tensile testing, the indentation method, and atomic force microscopy. Corneas of experimental animals and humans (in particular, donor eyes and material obtained as a result of keratoplasty) are considered as "sources" of samples. Selective evaluation of individual corneal structures using classical mechanical tensile tests is limited to a certain extent due to the rather small thickness of these structures and, as a consequence, difficulties in fixing the specimen. In real practice, it remains promising to use indentation and AFM, which are more adapted for such studies, on the one hand, eliminating the need for mechanical fixation of the specimen, and on the other hand, providing the possibility of studying various areas and surfaces of the latter.

About the Authors

S. E. Avetisov
M.M. Krasnov Research Institute of Eye Diseases; I.M. Sechenov First Moscow State Medical University, Department of Ophthalmology
Russian Federation

Avetisov S.E. – MD, Professor, Academician of Russian Academy of Science, M.M. Krasnov Research Institute of Eye Diseases, Director on Science I.M. Sechenov First Moscow State Medical University, Department of Ophthalmology, Chief



A. K. Dzamikhova
M.M. Krasnov Research Institute of Eye Diseases
Russian Federation

Dzamikhova A.K. – post-graduate student



A. V. Shitikova
M.M. Krasnov Research Institute of Eye Diseases
Russian Federation

Shitikova A.V. – Assistant of the department



Yu. M. Efremov
I.M. Sechenov First Moscow State Medical University
Russian Federation

Efremov YU.M. – PhD, Head of Department



P. S. Timashev
I.M. Sechenov First Moscow State Medical University
Russian Federation

Timashev P.S. – Doctor of Chemical Sciences, Professor, Scientific Supervisor



References

1. Avetisov E.S. Myopia. M.: Medicine, 1986. 239 p.

2. Avetisov E.S. Myopia. 2nd ed. / E.S. Avetisov. M.: Medicine, 1999. 288 p.

3. Avetisov, E. S. Three-factor theory of myopia and its progression / Myopia. Pathogenesis, prevention of progression and complications: materials of the international symposium. Moscow. 1990. Р: 9-15.

4. Antonyuk V.D., Kuznetsova T.S. Study of corneal biomechanical properties on CORVIS ST device (Oculus, Germany) in patients with myopia and myopic astigmatism / Ophthalmosurgery. 2020. No. 4. P. 20 28.

5. Iomdina E.N., Bauer S.M., Kotliar K.E. Eye biomechanics: theoretical aspects and clinical applications. / Moscow: Real Time; 2015.

6. Pleskova S.N. Atomic force microscopy in biological and medical research: Textbook / Dolgoprudny: 'Intellect' Publishing House. 2011. 184 p.

7. Comparative Evaluation of Biomechanical Characteristics of Acellular Dermal Matrix for Hernioplasty / K.I. Melkonyan, K.I. Popandopulo, S.B. Bazlov [et al.] // Kuban Scientific Medical Bulletin. 2022. №29(5). Р: 94-107. doi.org/10.25207/1608-6228-2022-29-5-94-107

8. Experimental studies of the biomechanical properties of the cornea /s.E. Avetisov, G.A. Osipyan, A.K. Abukerimova [et al.] // Vestn Oftalmol. 2022. No.138(3). Р:124-131.

9. A comparison of biomechanical properties between human and porcine cornea / Y. Zeng, J. Yang, K. Huang, Z. Lee, X. Lee // J Biomech. 2001. No. 34(4). Р: 533-7. doi: 10.1016/s0021-9290(00)00219-0

10. A magnetically actuated, optically sensed tensile testing method for mechanical characterization of soft biological tissues / L. Rosalia, A. Hallou, L. Cochrane, T. Savin //sci Adv. 2023. No.13;9(2):eade2522. doi: 10.1126/sciadv.ade2522.

11. Binnig G., Quate C.F., Gerber C. Atomic force microscope // Phys Rev Lett. 1986. No.3;56(9). Р:930-933. doi: 10.1103/PhysRevLett.56.930.

12. Biomechanical Characterization of Human Soft Tissues Using Indentation and Tensile Testing / M. Griffin, Y. Premakumar, A. Seifalian // J Vis Exp. 2016. No.13;(118):54872. doi: 10.3791/54872.

13. Biomechanics of the anterior human corneal tissue investigated with Atomic Force Microscopy / M. Lombardo, G. Lombardo, G. Carbone, M.P. De Santo, R. Barberi, S. Serrao // Investigative Ophthalmology & Visual Science, published online. 2012. No.53(2). Р:1050-1057.

14. Buch H. Prevalence and causes of visual impairment according to World Health Organization and United States criteria in an aged, urban Scandinavian population The Copenhagen City Eye Study // Ophthalmology. 2001. No.108(12). Р.2347-2357. doi: 10.1016/s0161-6420(01)00823-5

15. Corneal Biomechanical Properties in Varying Severities of Myopia / M.R. Sedaghat, Н. Momeni-Moghaddam, А. Azimi [et al.] // Front Bioeng Biotechnol. 2021. No. 21(8):595330. doi:10.3389/fbioe.2020.595330.

16. Compliance profile of the human cornea as measured by atomic force microscopy / Last J, Sara MТ, Croasdale СR, Russell P, Murphy CJ. // Micron. 2012. No. 43(12). Р:1293-8. doi.org/10.1016/j.micron.2012.02.014].

17. Danielsen C.C. Tensile mechanical and creep properties of Descemet's membrane and lens capsule // Exp Eye Res. 2004. No. 79(3). P:343-50. doi.org/10.1016/j.exer.2004.05.014

18. Determination of elastic moduli of thin layers of soft material using the atomic force microscope / E.K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick // Biophys J. 2002. No. 82(5). Р:2798-810. doi: 10.1016/S0006-3495(02)75620-8.

19. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy / J.A. Last, S.J. Liliensiek, P.F. Nealey, C.J. Murphy // Journal of Structural Biology. 2009. No.167. Р:19-24. doi.org/10.1016/j.jsb.2009.03.012

20. Dias J.M, Ziebarth N.M. Anterior and posterior corneal stroma elasticity assessed using nanoindentation // Exp Eye Res. 2013. No.115. Р:41-46. doi.org/10.1016/j.exer.2013.06.004

21. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage /s. Sim, A. Chevrier, M. Garon [et al.] // J Orthop Res. 2017. No.35(4). P:858-867. doi: 10.1002/jor.23330.

22. Epidemiologic Study of Ocular Refraction among Schoolchildren in Taiwan in 1995 / L. Lin, Y. Shih, C. Tsai, [et al] // Optometry and Vision Science. 1999. No. 76(5). Р:275-281. doi:/10.1097/00006324-199905000-00013

23. Fisher R.F. Elastic constants of the human lens capsule // Physiol. 1969. No. 201. P:1-19. doi.org/10.1113/physiol.19.9.sp008739

24. Foster, C.S., Yamamoto, G.K. Ocular rigidity in keratoconus // American Journal of Ophthalmology. 1978. No.86. Р:802-806

25. Fung Y.C. Biomechanics. 10.1007/978-1-4757-2257-4. doi:10.1007/978-1-4757-2257-4

26. Ganesan P, Wildsoet C. Pharmaceutical intervention for myopia control // Expert Rev Ophthalmol. 2010. No.5(6). Р:759-787. doi:10.1586/ eop.10.67

27. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050 / B.A. Holden, T.R. Fricke, D.A. Wilson [et al.] // Ophthalmology. 2016. No.123. Р:1036-1042. DOI: 10.1016/j.ophtha.2016.01.006

28. Grading cartilage damage with diffuse reflectance spectroscopy: Optical markers and mechanical properties / N.R. Rovnyagina, G.S. Budylin, P.V. Dyakonov, Y.M. Efremov [et al.] // J Biophotonics. 2023. No.16(3):e202200149. doi: 10.1002/jbio.202200149.

29. Hawkes P.W., Spence J.C. Atomic Force Microscopy in the Life Sciences //science of Microscopy. 2007. No.10.1007/978-0-387-49762-4. P:1025–1069. doi:10.1007/978-0-387-49762-4_16

30. Indentation versus tensile measurements of Young's modulus for soft biological tissues / C.T. McKee, J.A. Last, P.russell, C.J. Murphy // Tissue Eng Part B Rev. 2011. No.7(3). P:155-64. doi: 10.1089/ten.TEB.2010.0520.

31. International Conference on Mechatronics and Automation (ICMA) A cost-effective microindentation system for soft material characterization / W. Zhang, X. Dong [et al.] // 2015. P:825–830. doi:10.1109/icma.2015.7237592

32. S. The prevalence rates of refractive errors among children, adolescents, and adults in Germany // Clinical Ophthalmology. 2008. No.601. doi.org/10.2147/opth.s2836

33. Keratoconus: biomechanics ex vivo / R. Lohmüller, D. Böhringer, P.C. Maier, A.K. Ross [et al.] // Klin Monbl Augenheilkd. 2023. No. 240(6). P:774-778. doi: 10.1055/a-2062-3633

34. Kontomaris S.V., Stylianou A. Atomic force microscopy for university students: applications in biomaterials // European Journal of Physics. 2017. No. 38(3);033003. doi:10.1088/1361-6404/aa5cd6

35. Lavanya Devi A.L., Nongthomba U., Bobji M.S. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy // J Mech Behav Biomed Mater. 2016. No.53. Р:161-173.

36. Nanoscale topography of the corneal epithelial basement membrane and Descemet’s membrane of the human / G.A. Abrams, S.S. Schaus, S.L. Goodman, P.F. Nealey, C.J. Murphy // Cornea. 2000. No.19. Р:57–64. doi.org/10.1097/00003226-200001000-00012].

37. New locus for autosomal dominant high myopia maps to the long arm of chromosome / P. Paluru, S.M. Ronan, E. Heon, M. Devoto, Wildenberg [et al.] // Invest. Ophthalmol. Vis. Sci. 2003. No. 44. Р:1830–1836. doi: 10.1167/iovs.02-0697

38. Nguyen B.A., Roberts C.J., Reilly M.A. Biomechanical Impact of the Sclera on Corneal Deformation Response to an Air-Puff: A Finite-Element Study // Front Bioeng Biotechnol. 2019. No.10(6). Р:210. doi: 10.3389/fbioe.2018.00210.

39. Novel parameter of corneal biomechanics that differentiate normals from glaucoma / R. Lee, R.T. Chang, I.Y. Wong [et al.] // J. Glaucoma. 2016b. No. 25. P.603-609. doi: 10.1097/IJG.0000000000000284

40. Mechanical properties of anterior lens capsule assessed with AFM and nanoindenter in relation to human aging, pseudoexfoliation syndrome, and trypan blue staining / Y.M. Efremov, N.A. Bakhchieva, B.S. Shavkuta [et al.] // J Mech Behav Biomed Mater. 2020. No. 112:104081. doi: 10.1016/j.jmbbm.2020.104081.

41. Microindentation test for assessing the mechanical properties of cartilaginous tissues / X. Li, Y.H. An, Y.D. Wu // J Biomed Mater Res B Appl Biomater. 2007. No. 80(1). Р:25-31. doi: 10.1002/jbm.b.30564.

42. Microindentation for in vivo measurement of bone tissue mechanical properties in humans / A. Diez-Perez, R. Güerri, X. Nogues [et al.] // J Bone Miner Res. 2010. No. 25(8). Р:1877-85. doi: 10.1002/jbmr.73.

43. Oyen M.L. Nanoindentation of Biological and Biomimetic Materials<span></span>, aop(aop). 2012. P:0–0. doi:10.1111/j.1747-1567.2011.00716.x

44. Prevalence and associated factors of myopia in high-school students in Beijing / L.J. Wu, Q.S. You, J.L. Duan [et al.] // PLoS ONE. 2015. No.10: e0120764. doi: 10.1371/journal.pone.0120764

45. Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy / I. Jorba, J.J. Uriarte, N. R. Campillo, Farré, D. Navajas // J Cell Physiol. 2017. No. 232(1). P:19-26. doi: 10.1002/ jcp.25420

46. Sicard D., Fredenburgh L.E., Tschumperlin D.J. Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions // J Mech Behav Biomed Mater. 2017. No.74. Р:118-127. doi: 10.1016/j.jmbbm.2017.05.039.

47. Soden P.D., Kershaw I. Tensile testing of connective tissues // Med Biol Eng. 1974. No.12(4). Р:510-8. doi: 10.1007/BF02478609.

48. Softening Effects in Biological Tissues and NiTi Knitwear during Cyclic Loading / Y.F. Yasenchuk, E.S. Marchenko, S.V. Gunter [et al.] // Materials (Basel). 2021. No.21;14(21):6256. doi: 10.3390/ma14216256.

49. Standardized tensile testing of soft tissue using a 3D printed clamping system / M. Scholze, S. Safavi, K.C. Li, B. Ondruschka [et al.] // HardwareX. 2020. No. 21;8:e00159. doi:10.1016/j.ohx.2020.e00159.

50. Tensile biomechanical properties and constitutive parameters of human corneal stroma extracted by SMILE procedure / Y. Xiang, M. Shen, C. Xue [et al.] // J Mech Behav Biomed Mater. 2018. No.85. Р:102-108. doi: 10.1016/j.jmbbm.2018.05.042.

51. Use of Nanoindentation in Determination of Regional Biomechanical Properties of Rabbit Cornea After UVA Cross-Linking / X. Zheng, Y. Xin, C. Wang [et al.] // Invest Ophthalmol Vis Sci. 2023. No. 3;64(13). Р:26. doi:10.1167/iovs.64.13.26.

52. Vellara H.R., Patel D.V. Biomechanical properties of the keratoconic cornea: a review / Clin Exp Optom. 2015. No. 98(1). Р:31-8. doi: 10.1111/cxo.12211.

53. Wollensak G., Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking / Acta Ophthalmol. 2009. No. 87(1). Р:48-51. doi: 10.1111/j.1755-3768.2008.01190.x.


Review

For citations:


Avetisov S.E., Dzamikhova A.K., Shitikova A.V., Efremov Yu.M., Timashev P.S. Modern methods of experimental evaluation of biomechanical properties. Yakut Medical Journal. 2024;(2):70-75. https://doi.org/10.25789/YMJ.2024.86.17

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)