Preview

Якутский медицинский журнал

Расширенный поиск

Анализ варианта c.757A>G p.(Ile253Val) гена SLC26A4 у GJB2-негативных пациентов с потерей слуха в Якутии

https://doi.org/10.25789/YMJ.2023.83.20

Аннотация

В работе проведен поиск варианта c.757A>G p.(Ile253Val) гена SLC26A4 у GJB2-негативных пациентов с потерей слуха и в контрольной группе слышащих индивидов в Якутии. В результате среди пациентов вариант был обнаружен с частотой 2,02%, в контрольной группе - 1,94%. Для интерпретации клинической значимости варианта был проведен анализ частоты встречаемости варианта и in silico оценка, результаты которых свидетельствуют в пользу вероятной доброкачественности варианта c.757A>G p.(Ile253Val) гена SLC26A4, поскольку на это указывают высокая частота встречаемости в популяционных выборах и то, что данная миссенс-замена теоретически не нарушает структурной стабильности белка пендрина (SLC26A4).

Об авторах

В. Г. Пшенникова
ЯНЦ КМП
Россия

ПШЕННИКОВА Вера Геннадиевна – к.б.н., в.н.с.

Якутск



Ф. М. Терютин
ЯНЦ КМП
Россия

ТЕРЮТИН Федор Михайлович – к.м.н., н.с.

Якутск



А. М. Чердонова
СВФУ им. М.К. Аммосова
Россия

ЧЕРДОНОВА Александра Матвеевна – м.н.с.

Якутск



Т. В. Борисова
СВФУ им. М.К. Аммосова
Россия

БОРИСОВА Туяра Валерьевна – м.н.с.

Якутск



С. А. Федорова
СВФУ им. М.К. Аммосова
Россия

ФЕДОРОВА Сардана Аркадьевна – д.б.н., зав. науч.-иссл. лаб.

Якутск



Н. А. Барашков
ЯНЦ КМП
Россия

БАРАШКОВ Николай Алексеевич – к.б.н., в.н.с.-руковод. лаб.

Якутск



Список литературы

1. Analysis of SLC26A4, FOXI1, and KCNJ10 Gene Variants in Patients with Incomplete Partition of the Cochlea and Enlarged Vestibular Aqueduct (EVA) Anomalies / L.A. Klarov, V.G. Pshennikova, G.P. Romanov [et al] // Int J Mol Sci. – 2022. – V. 23. – P.15372. DOI: 10.3390/ijms232315372.

2. Bassot C. Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain / C. Bassot, G. Minervini, E. Leonardi, S.C.E. Tosatto // Biochimie. – 2017. – V. 132. – P. 109-120. DOI: 10.1016/j.biochi.2016.10.002.

3. Common molecular etiologies are rare in nonsyndromic Tibetan Chinese patients with hearing impairment / Y. Yuan, X. Zhang, S. Huang [et al] // PLoS One. – 2012. – V. 7(2):e30720. DOI: 10.1371/journal.pone.0030720.

4. Comprehensive molecular etiology analysis of nonsyndromic hearing impairment from typical areas in China / Y. Yuan, Y. You, D. Huang [et al] // J Transl Med. – 2009. – V. 7. – P. 79. DOI: 10.1186/1479-5876-7-79.

5. Concurrent newborn hearing and genetic screening of common hearing loss variants with bloodspot-based targeted next generation sequencing in Jiangxi province / H. Luo, Y. Yang, X. Wang [et al] // Front Pediatr. – 2022. – V. 10. – P. 1020519. DOI: 10.3389/fped.2022.1020519.

6. Del Castillo F.J. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes / F.J. Del Castillo, I. Del Castillo // Front Mol Neurosci. – 2017. – V. 10. – P. 428. DOI: 10.3389/fnmol.2017.00428.

7. Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study / A. Tropitzsch, T. Schade-Mann, P. Gamerdinger [et al] // Ear Hear. - 2022 – V. 43(3). – P. 1049-1066. DOI: 10.1097/AUD.0000000000001159.

8. Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss / A.M. Oza, M.T. DiStefano, S.E. Hemphill [et al] // Hum Mutat. – 2018. – V. 39(11). – P. 1593-1613. DOI: 10.1002/humu.23630.

9. Genetic Epidemiology and Clinical Features of Hereditary Hearing Impairment in the Taiwanese Population / C-C. Wu, C-Y. Tsai, Y-H. Lin [et al] // Genes. – 2019. – V. 10(10) - P. 772. DOI: 10.3390/genes10100772.

10. Genetic screening of a Chinese cohort of children with hearing loss using a next-generation sequencing panel / J. Ma, X. Ma, K. Lin [et al] // Hum Genomics. – 2023. - V. 7(1). – P. 1. DOI: 10.1186/s40246-022-00449-1.

11. Genotyping and audiological characteristics of infants with a single-allele SLC26A4 mutation / X. Zhao, L. Huang, X. Wang [et al] // Int J Pediatr Otorhinolaryngol. - 2019. – V. 116. – P. 153-158. DOI: 10.1016/j.ijporl.2018.10.046.

12. Global genetic insight contributed by consanguineous Pakistani families segregating hearing loss / Richard EM, Santos-Cortez RLP, Faridi R, [et al] // Hum Mutat. – 2019. – V. –40(1). - P. 53-72. DOI: 10.1002/humu.23666.

13. Highly accurate protein structure prediction for the human proteome / K. Tunyasuvunakool, J. Adler, Z. Wu [et al] // Nature. – 2021. – V. 596(7873). – P. 590-596. doi: 10.1038/s41586-021-03828-1.

14. Highly accurate protein structure prediction with AlphaFold / J. Jumper, R. Evans, A. Pritzel [et al] // Nature. – 2021. – V. 596. – P. 583– 589. DOI: 10.1038/s41586-021-03819-2.

15. Human SLC26A4/Pendrin STAS domain is a nucleotide-binding protein: Refolding and characterization for structural studies / A.K. Sharma, T. Krieger, A.C. Rigby [et al] // Biochem Biophys Rep. – 2016. - V. 8. – P. 184-191. DOI: 10.1016/j.bbrep.2016.08.022.

16. Increased diagnostic yield in a cohort of hearing loss families using a comprehensive stepwise strategy of molecular testing / B. Zeng, H. Xu, Y. Yu [et al] // Front Genet. – 2022. – V. 13. – P. 1057293. DOI: 10.3389/fgene.2022.1057293.

17. Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters / D. Gorbunov, M. Sturlese, F. Nies [et al] // Nat Commun. – 2014. – V. 5. – P. 3622. DOI: 10.1038/ncomms4622.

18. Molecular epidemiology and functional assessment of novel allelic variants of SLC26A4 in non-syndromic hearing loss patients with enlarged vestibular aqueduct in China / Y. Yuan, W. Guo, J. Tang [et al] // PLoS One. – 2012. – V. 7(11):e49984. DOI: 10.1371/journal.pone.0049984.

19. Morton C.C. Newborn hearing screening – a silent revolution / C.C. Morton, W.E. Nance // N Engl J Med. – 2006. – V. 354(20). - P. 2151-2164. DOI: 10.1056/NEJMra050700.

20. Novel mutations of SLC26A4 in Chinese patients with nonsyndromic hearing loss / Yao G, Chen D, Wang H, [et al] // Acta Otolaryngol. – 2013. – V. 133(8). – P. 833-41. DOI: 10.3109/00016489.2013.777160.

21. Pendred Syndrome Is Caused by Pathogenic variants in a Putative Sulphate Transporter Gene (PDS) / L.A. Everett, B. Glaser, J.C. Beck [et al] // Nat. Genet. – 1997. – V. 17. – P. 411–422. DOI: 10.1038/ng1297-411.

22. Pendrin, Encoded by the Pendred Syndrome Gene, Resides in the Apical Region of Renal Intercalated Cells and Mediates Bicarbonate Secretion / I.E. Royaux, S.M. Wall, L.P. Karniski, [et al] // Proc. Natl. Acad. Sci. USA. – 2001. – V. 98. – P. 4221–4226. DOI: 10.1073/pnas.071516798.

23. Scott D.A. Human Pendrin Expressed in Xenopus Laevis Oocytes Mediates Chloride/ Formate Exchange / D.A. Scott, L.P. Karniski // Am. J. Physiol. Cell Physiol. – 2000. – V. 278. – P. 207–211. DOI: 10.1152/ajpcell.2000.278.1.C207.

24. Soleimani M. Molecular physiology of the renal chloride-formate exchanger / M. Soleimani // Curr. Opin. Nephrol. Hypertens. – 2001. – V. 10. – P. 677–683. DOI: 10.1097/00041552-200109000-00020.

25. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic) / N.A. Barashkov, V.G. Pshennikova, O.L. Posukh [et al] // PLoS One. – 2016. – V. - 11(5):e0156300. DOI: 10.1371/journal.pone.0156300.

26. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology / S. Richards, N. Aziz, S. Bale [et al] // Genet Med. – 2015. – V. 17(5). - P. 405-24. DOI: 10.1038/gim.2015.30.

27. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family / E.R. Geertsma, Y.N. Chang, F.R. Shaik [et al] // Nat Struct Mol Biol. – 2015. – V. 22. – P. 803-808. DOI: 10.1038/nsmb.3091.

28. The Pendred Syndrome Gene Encodes a Chloride-Iodide Transport Protein / D.A. Scott, R. Wang, T.M. Kreman [et al] // Nat. Genet. – 1999. – V. 21. – P. 440–443. DOI: 10.1038/7783.

29. The Pendrin Polypeptide. In: Dossena, S., Paulmichl, M. (eds) The Role of Pendrin in Health and Disease / S. Dossena, E. Bernardinelli, A.K. Sharma [et al] // Springer, Cham. – 2017. - P. 187-220. DOI: 10.1007/978-3-319-43287-8_11.

30. Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels / N. Pedemonte, E. Caci, E. Sondo [et al] // J Immunol. – 2007. – V. 178. P. 5144–5153. DOI: 10.4049/jimmunol.178.8.5144.

31. Whole-exome sequencing identifies genetic variants of hearing loss in 113 Chinese families / J. Pan, S. Ma, Y. Teng [et al] // Clin Chim Acta. – 2022. - V. 532. – P. 53-60. DOI: 10.1016/j.cca.2022.05.020.


Рецензия

Для цитирования:


Пшенникова В.Г., Терютин Ф.М., Чердонова А.М., Борисова Т.В., Федорова С.А., Барашков Н.А. Анализ варианта c.757A>G p.(Ile253Val) гена SLC26A4 у GJB2-негативных пациентов с потерей слуха в Якутии. Якутский медицинский журнал. 2023;(3):79-84. https://doi.org/10.25789/YMJ.2023.83.20

For citation:


Pshennikova V.G., Teryutin F.M., Cherdonova A.M., Borisova T.V., Fedorova S.A., Barashkov N.A. Analysis of the c.757A>G p.(Ile253Val) variant of the SLC26A4 gene in GJB2-negative patients with hearing loss in Yakutia. Yakut Medical Journal. 2023;(3):79-84. https://doi.org/10.25789/YMJ.2023.83.20

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)