Glutathione and lipid peroxidation levels in the blood of lung cancer patients
https://doi.org/10.25789/YMJ.2024.86.07
Abstract
Lung cancer is one of the most commonly diagnosed malignant tumors worldwide and is characterized by high mortality. Lipid peroxidation plays a very important role in the development and progression of lung cancer. In this regard, the purpose of this study was to evaluate the status of lipid peroxidation and the glutathione system in patients with lung cancer depending on the histological form and stage of the disease.
In this work, 100 people with lung cancer with various histological forms and stages of the disease were examined. The intensity of free radical oxidation of lipids was assessed by the accumulation of malondialdehyde. The indicators of the glutathione system were assessed by the concentration of the reduced form of glutathione and the activity of enzymes: glutathione peroxidase, glutathione reductase, glutathione transferase.
Our data indicate that as the clinical stage of lung cancer develops, the level of lipid peroxidation increases, against the background of inhibition of the glutathione system (decreased glutathione reductase activity). Higher levels of malondialdehyde in patients with adenocarcinoma suggest that tumor development may be more closely related to oxidative stress.
About the Authors
E. K. RumyantsevRussian Federation
Rumyantsev Egor Konstantinovich – junior researcher, Arctic Medical Center.
Yakutsk
E. V. Tomtosova
Russian Federation
Tomtosova Eugenia Viktorovna – junior researcher, Epidemiology of Chronic Non-Infectious Diseases Department
Yakutsk
V. M. Nikolaev
Russian Federation
Nikolaev Vyacheslav Mikhailovich – PhD in Biology, senior researcher, Epidemiology of Chronic Non-Infectious Diseases Department.
Yakutsk
References
1. Kalinina E.V., Chernov N.N., Novichkova M.D. 18197920. Biomarkers Prev. 2019 Oct;28(10):1563-1579. The role of glutathione, glutathiotransferase and glutaredoxin in the regulation of redox-dependent processes // Successes of biological Chemistry. 2014. Vol. 54. P. 299-384. EDN TUTVVJ.
2. Oxidative modification of plasma proteins and lipids in patients with lung cancer / R.N. Belonogov, N.M. Titova, Yu.A. Dykhno [et al.] // Siberian Journal of Oncology. 2009. No. 4.
3. Free radical oxidation and carcinogenesis: controversial issues / V.N. Pavlov, I.R. Rakhmatullina, R.R. Farkhutdinov [et al.] // Creative surgery and oncology. 2017. No. 2.
4. Abid SA “ANTI-OXIDANTS AND LUNG CANCER”. LIAQUAT MEDICAL RESEARCH JOURNAL. Vol. 4. No. 4, Jan. 2023, doi:10.38106/LMRJ.2022.4.4-01 .
5. Andrew W.C ,Stella T, Ahmad B. (2021). Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutation Research/Reviews in Mutation Research, (), –. doi:10.1016/j.mrrev.2021.108365
6. Bade BC, Dela Cruz CS. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med. 2020;41(1):1-24. doi:10.1016/j.ccm.2019.10.001
7. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018 Jul 2;217(7):2291-2298. doi: 10.1083/jcb.201804161. Epub 2018 Jun 18. PMID: 29915025; PMCID: PMC6028537.
8. Chiang, F.-F.; Huang, S.-C.; Yu, P.-T.; Chao, T.-H.; Huang, Y.-C. Oxidative Stress Induced by Chemotherapy: Evaluation of Glutathione and Its Related Antioxidant Enzyme Dynamics in Patients with Colorectal Cancer. Nutrients 2023, 15, 5104. https://doi.org/10.3390/nu15245104
9. Dastmalchi N, Baradaran B, Latifi-Navid S, Safaralizadeh R, Khojasteh SMB, Amini M, Roshani E, Lotfinejad P. Antioxidants with two faces toward cancer. Life Sci. 2020 Oct 1;258:118186. doi: 10.1016/j.lfs.2020.118186. Epub 2020 Aug 6. PMID: 32768586.
10. Delia A-L, Lidia M-B, Segundo Á, Nuria E-C, and et.al. The Effectiveness of Glutathione Redox Status as a Possible Tumor Marker in Colorectal Cancer . International Journal of Molecular Sciences, (2021), – doi:10.3390/ijms22126183
11. D'souza D, Subhas BG, Shetty SR, Balan P. Estimation of serum malondialdehyde in potentially malignant disorders and post-antioxidant treated patients: A biochemical study. Contemp Clin Dent. 2012 Oct;3(4):448-51. doi: 10.4103/0976-237X.107438. PMID: 23633807; PMCID: PMC3636848.
12. Esme H, Cemek M, Sezer M, Saglam H, Demir A, Melek H, Unlu M. High levels of oxidative stress in patients with advanced lung cancer. Respirology. 2018 Jan;13(1):112-6. doi: 10.1111/j.1440-1843.2007.01212.x. PMID: 18197920.
13. Gurer-Orhan H, Ince E, Konyar D, Saso L, Suzen S. The Role of Oxidative Stress Modulators in Breast Cancer. Curr Med Chem. 2018;25(33):4084-4101. doi: 10.2174/0929867324666170711114336. PMID: 28699501
14. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130-9. PMID: 4436300.
15. Harris IS, DeNicola GM. The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol. 2020 Jun;30(6):440-451. doi: 10.1016/j.tcb.2020.03.002. Epub 2020 Apr 14. PMID: 32303435.
16. Hiva D, Nasrin Z, Seyed A, Nahid N, Roghayeh A. "Association between Oxidative Stress Parameters and Hematological Indices in Breast Cancer Patients", International Journal of Breast Cancer, vol. 2022, Article ID 1459410, 8 pages, 2022. https://doi.org/10.1155/2022/1459410
17. Jablonska E, Gromadzinska J, Peplonska B, Fendler W, Reszka E, Krol MB, Wieczorek E, Bukowska A, Gresner P, Galicki M, Zambrano Quispe O, Morawiec Z, Wasowicz W. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer. 2015 Oct 7;15:657. doi: 10.1186/s12885-015-1680-4. PMID: 26446998; PMCID: PMC4597452.
18. Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J Cancer Res Ther. 2021;17(1):22-28. doi:10.4103/jcrt.JCRT_862_16
19. Kalinina EV, Gavriliuk LA. Glutathione Synthesis in Cancer Cells. Biochemistry (Mosc). 2020 Aug;85(8):895-907. doi: 10.1134/S0006297920080052. PMID: 33045950.
20. Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules. 2020 Oct 9;10(10):1429. doi: 10.3390/biom10101429. PMID: 33050144; PMCID: PMC7600400.
21. Malhotra, Jyoti; Malvezzi, Matteo; Negri, Eva; La Vecchia, Carlo; Boffetta, Paolo (2016). Risk factors for lung cancer worldwide. European Respiratory Journal, (), ERJ-00359-2016–. doi:10.1183/13993003.00359-2016
22. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018 Aug;80:50-64. doi: 10.1016/j.semcdb.2017.05.023. Epub 2017 Jun 3. PMID: 28587975.
23. Ou Y, Huang J, Yang L. The prognostic significance of pretreatment serum γ-glutamyltranspeptidase in primary liver cancer: a meta-analysis and systematic review. Biosci Rep. 2018 Nov 28;38(6):BSR20181058. doi: 10.1042/BSR20181058. PMID: 30389711; PMCID: PMC6259011.
24. Poljsak B, Milisav I. The Role of Antioxidants in Cancer, Friends or Foes? Curr Pharm Des. 2018;24(44):5234-5244. doi: 10.2174/1381612825666190123112647. PMID: 30674247.
25. Sajadimajd S, Khazaei M. Oxidative Stress and Cancer: The Role of Nrf2. Curr Cancer Drug Targets. 2018;18(6):538-557. doi: 10.2174/1568009617666171002144228. PMID: 28969555.
26. Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev. 2019 Oct;28(10):1563-1579. doi: 10.1158/1055-9965.EPI-19-0221. PMID: 31575553; PMCID: PMC6777859.
27. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.
28. Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, Chen Q, Zhang J, Cao J. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 2021 Apr;12(8):1219-1230. doi: 10.1111/1759-7714.13904. Epub 2021 Mar 3. Erratum in: Thorac Cancer. 2024 Apr 5;: PMID: 33656766; PMCID: PMC8046146.
29. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502-22. doi: 10.1016/0003-2697(69)90064-5. PMID: 4388022.
30. Wood, Steven L.; Pernemalm, Maria; Crosbie, Philip A.; Whetton, Anthony D. (2015). Molecular histology of lung cancer: From targets to treatments. Cancer Treatment Reviews, 41(4), 361–375. doi:10.1016/j.ctrv.2015.02.008
31. Xiang M, Feng J, Geng L, et al. Sera total oxidant/antioxidant status in lung cancer patients. Medicine (Baltimore). 2019;98(37):e17179. doi:10.1097/MD.0000000000017179
32. Zhang R, Kang KA, Piao MJ, Kim KC, Zheng J, Yao CW, Cha JW, Maeng YH, Chang WY, Moon P, Moon P, et al: Epigenetic alterations are involved in the overexpression of glutathione S-transferase π-1 in human colorectal cancers. Int J Oncol 45: 1275-1283, 2014 DOI: 10.25789/YMJ.2024.86.08
Review
For citations:
Rumyantsev E.K., Tomtosova E.V., Nikolaev V.M. Glutathione and lipid peroxidation levels in the blood of lung cancer patients. Yakut Medical Journal. 2024;(2):31-34. https://doi.org/10.25789/YMJ.2024.86.07