Analysis of the expression level of circulating micrornas in the blood of patients with Alzheimer's disease
https://doi.org/10.25789/YMJ.2024.86.01
Abstract
Over the past few decades, there has been a steady decline in fertility worldwide, while life expectancy has been increasing. This is leading to an ageing population. In today's aging world, cognitive disorders and dementia in the elderly are key problems. Thus studying the regulation of the molecular mechanisms of age-related cognitive impairment is an urgent task. Fourteen elderly and senile individuals with Alzheimer's disease participated in this study. The expression of circulating microRNAs at all stages was determined using kits from Qiagen (Germany).
A study was conducted to determine the expression level of circulating microRNAs: hsa-mir-483, hsa-miR-132, hsa-mir-29c, hsa-mir-193b in the blood serum of elderly and senile people suffering from Alzheimer's disease.
The data obtained by us indicates that in patients suffering from Alzheimer's disease, the levels of these micro-RNAs depended on age and the degree of cognitive impairment. Circulating mir-132-5p microRNA was detected in the blood serum of senile people suffering from moderate dementia, in contrast to elderly people with mild degree of dementia.
About the Authors
V. M. NikolaevRussian Federation
Nikolaev Vyacheslav Mikhailovich – Candidate of Biological Sciences, senior researcher
N. M. Krasnova
Russian Federation
Krasnova Natalia Mikhailovna – Candidate of Medical Sciences, Associate Professor
A. S. Asekritova
Russian Federation
Asekritova Alexandra Stepanovna – Candidate of Medical Sciences, Associate Professor at the M.K. Ammosov Northeastern Federal University, Head of The Center for Predictive Medicine and Bioinformatics of the Republican Clinical Hospital No. 3
O. V. Tatarinova
Russian Federation
Tatarinova Olga Viktorovna – Doctor of Medical Sciences, senior researcher at the YSC of Complex Medical Problems, chief physician of the RCH No. 3
I. V. Bure
Russian Federation
Bure Irina Vladimirovna – Candidate of Biological Sciences, Senior Researcher
D. A. Sychev
Russian Federation
Sychev Dmitry Alekseevich – Doctor of Medical Sciences, Prof., Prof. RAS, acad. RAS, Rector
References
1. Gromova D.O. New era of treatment of Alzheimer’s disease: aducanumab // Behavioral Neurology. 2021. № 2. P. 48–55. DOI: 10.46393/2712-9675_2021_2_48_55
2. Clinical recommendations. Cognitive disorders in elderly and senile people. Approved by the Ministry of Health of the Russian Federation in 2020. Expiration date: 2022. ID: 617. Developed by: the public organization "Russian Society of Psychiatrists", the All-Russian public organization "Russian Association of Gerontologists and Geriatricians". Approved by the Scientific and Practical Council of the Ministry of Health of the Russian Federation. 170 p.
3. Lobzin V.Yu., Kolmakova K.A., Emelin A.Yu. A new look at the pathogenesis of Alzheimer's disease: modern ideas about amyloid clearance // Review of psychiatry and medical psychology named after V.M. Bekhterev. 2018. (2). Р. 22-28. doi.org/10.31363/2313-7053-2018-2-22-28
4. A.B. Lokshina Severe dementia: diagnosis, patient management, prevention of complications // Neurology, neuropsychiatry, psychosomatics. 2014. (1). Р. 54–60. DOI: tp://dx.doi.org/10.14412/2074-2711-2014-1-54-60.
5. Difficulties in diagnosing atypical variants of Alzheimer’s disease. / A.A. Tappakhov [et. al] // Russian neurological journal. 2021. 26(5). Р. 16-23. https://doi.org/10.30629/2658-7947-2021-26-5-16-23.
6. Capano LS, Sato C, Ficulle E, et al. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell. 2022. 29(6). Р. 918-932.e8. doi:10.1016/j.stem.2022.04.018
7. Deng Y, Zhang J, Sun X, et al. miR-132 improves the cognitive function of rats with Alzheimer's disease by inhibiting the MAPK1 signal pathway. Exp Ther Med. 2020. 20(6). Р.159. doi:10.3892/etm.2020.9288
8. Dolati, S., Aghebati-Maleki, L., Ahmadi, M., Marofi, F., Babaloo, Z., Ayramloo, H., Jafarisavari, Z., Oskouei, H., Afkham, A., Younesi, V., Nouri, M., & Yousefi. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. Journal of cellular physiology. 2018. 233(7). Р. 5222–5230. https://doi.org/10.1002/jcp.26301
9. Frisoni GB, Altomare D, Thal DR, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022. 23(1). Р. 53-66. doi:10.1038/s41583-021-00533-w
10. Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging [published correction appears in Neuropathol Appl Neurobiol. 2015 Jun;41(4):571] [published correction appears in Neuropathol Appl Neurobiol. 2015 Jun;41(4):571]. Neuropathol Appl Neurobiol. 2015;41(1):24-46. doi:10.1111/nan.12213
11. Hadar A, Milanesi E, Walczak M, et al. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer's Disease. Sci Rep. 2018;8(1):8465. Published 2018 May 31. doi:10.1038/s41598-018-26547-6
12. Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 2007;26(13):3169-3179. doi:10.1038/sj.emboj.7601758
13. Liu CG, Song J, Zhang YQ, Wang PC. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer's disease. Mol Med Rep. 2014;10(5):2395-2400. doi:10.3892/mmr.2014.2484
14. Nagaraj S, Laskowska-Kaszub K, Dębski KJ, et al. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer's disease patients from non-demented subjects. Oncotarget. 2017;8(10):16122-16143. doi:10.18632/oncotarget.15109
15. Sabry R, El Sharkawy RE, Gad NM. MiRNA -483-5p as a Potential Noninvasive Biomarker for Early Detection of Alzheimer's Disease. Egypt J Immunol. 2020;27(2):59-72. https://www.researchgate.net/publication/355170638_MiRNA_-483
16. Satoh A, Brace CS, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416-430. doi:10.1016/j.cmet.2013.07.013
17. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. Lancet. 2021;397(10284):1577-1590. doi:10.1016/S0140-6736(20)32205-4
18. Smith PY, Hernandez-Rapp J, Jolivette F, et al. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet. 2015;24(23):6721-6735. doi:10.1093/hmg/ddv377
19. Sun A, Liu M, Nguyen XV, Bing G. P38 MAP kinase is activated at early stages in Alzheimer's disease brain. Exp Neurol. 2003;183(2):394-405. doi:10.1016/s0014-4886(03)00180-8
20. van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci. 2020;21(1):21-35. doi:10.1038/s41583-019-0240-3
21. Vrabec, K., Boštjančič, E., Koritnik, B., Leonardis, L., Dolenc Grošelj, L., Zidar, J., Rogelj, B., Glavač, D., & Ravnik-Glavač, M. (2018). Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients. Frontiers in molecular neuroscience, 11, 106. https://doi.org/10.3389/fnmol.2018.00106
22. Walgrave H, Balusu S, Snoeck S, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer's disease. Cell Stem Cell. 2021;28(10):1805-1821.e8. doi:10.1016/j.stem.2021.05.001
23. Wang Y, Veremeyko T, Wong AH, et al. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer's disease. Neurobiol Aging. 2017;51:156-166. doi:10.1016/j.neurobiolaging.2016.12.015
24. Wu Y, Xu J, Xu J, et al. Lower Serum Levels of miR-29c-3p and miR-19b-3p as Biomarkers for Alzheimer's Disease. Tohoku J Exp Med. 2017;242(2):129-136. doi:10.1620/tjem.242.129
25. Xie AJ, Hou TY, Xiong W, et al. Tau overexpression impairs neuronal endocytosis by decreasing the GTPase dynamin 1 through the miR-132/MeCP2 pathway. Aging Cell. 2019;18(3):e12929. doi:10.1111/acel.12929
26. Xie, B., Zhou, H., Zhang, R., Song, M., Yu, L., Wang, L., Liu, Z., Zhang, Q., Cui, D., Wang, X., & Xu, S. (2015). Serum miR-206 and miR-132 as Potential Circulating Biomarkers for Mild Cognitive Impairment. Journal of Alzheimer's disease: JAD, 45(3), 721–731. https://doi.org/10.3233/JAD-142847
27. Yang, Z., Li, T., Li, S., Wei, M., Qi, H., Shen, B., Chang, R. C., Le, W., & Piao, F. (2019). Altered Expression Levels of MicroRNA-132 and Nurr1 in Peripheral Blood of Parkinson's Disease: Potential Disease Biomarkers. ACS chemical neuroscience, 10(5), 2243–2249. https://doi.org/10.1021/acschemneuro.8b00460
28. Zhang, M., & Bian, Z. (2021). Alzheimer's Disease and microRNA-132: A Widespread Pathological Factor and Potential Therapeutic Target. Frontiers in neuroscience, 15, 687973. https://doi.org/10.3389/fnins.2021.687973
Review
For citations:
Nikolaev V.M., Krasnova N.M., Asekritova A.S., Tatarinova O.V., Bure I.V., Sychev D.A. Analysis of the expression level of circulating micrornas in the blood of patients with Alzheimer's disease. Yakut Medical Journal. 2024;(2):5-8. https://doi.org/10.25789/YMJ.2024.86.01