Preview

Yakut Medical Journal

Advanced search

Effect of physical stressors on neuroendocrine response in critically ill patients

https://doi.org/10.1234/YMJ.2022.77.25

Abstract

A critical condition is a complex of changes that require replacement of the functions of vital organs and systems to prevent death. The set of reactions can be considered as a gradual development of physiological and pathological reactivity. The most important role in the formation of reactivity in critical conditions is played by the neuroendocrine and neuroimmune systems. The concept of the neuroendocrine system includes connections between the endocrine and central nervous systems and their relationship in the control of homeostasis. Stimulation of the immune system to a complex neuroimmunoendocrine interaction in order to avoid development of a critical condition. Cytokines and afferent pathways of the vagus nerve activate the hypothalamic-pituitary-adrenal system, as a result of which the increased secretion of glucocorticoids suppresses the activity of the immune system. The main action of thyroid hormones is manifested at the genomic level by stimulating the synthesis of many structural proteins of the body and suppressing the expression of neuronal NOS. The sympathetic link of the autonomic nervous system leads to a decrease in the release of pro-inflammatory cytokines, while the synthesis of anti-inflammatory cytokines does not change. In turn, glucocorticoids have a powerful anti-inflammatory effect by reducing the transcription of cytokines by suppressing the nuclear factor "kappa-bi" - a universal transcription factor that controls the expression of genes for the immune response, apoptosis and the cell cycle. At the same time, in critical conditions, a high level of cortisol is observed against the background of a suppressed level of ACTH. This fact is explained by glucocorticoid resistance.

The relationship between the immune system and the central nervous system when exposed to stressors leads to stereotyped responses that include autonomic, endocrine and behavioral components. But despite the extremely important role of neuroendocrine factors in the implementation of critical conditions, their significance, as well as indications and measures of influence on them, have not yet been studied in detail. Further study and the concept of endocrinopathies of critical conditions in the future will be the basis for assessing the endocrine status in order to resolve the issue of the need for substitution therapy.

About the Authors

N. E. Altshuller
АО «Европейский медицинский центр»
Russian Federation

Natavan E. Altshuller – MD, endocrinologist, anesthesiologist.

Moscow



E. I. Aleschenko
АО «Европейский медицинский центр»
Russian Federation

Elena I. Aleschenko – MD, anesthesiologist and intensive care specialist, head of the department.

Moscow



M. B. Kutcyi
АО «Европейский медицинский центр»
Russian Federation

Mikhail B. Kutcyi – MD, anesthesiologist, supervisor of the operation center.

Moscow



N. M. Kruglyakov
State Scientific Research Center of the Russian Federation, Burnazyan Federal Medical Biophysical Centre of Federal Medical Biological Agency
Russian Federation

Nikolay M. Kruglyakov – anesthesiologist, head of the department, the State Scientific Research Center of the Russian Federation, Burnazyan Federal Medical Biophysical Centre of Federal Medical Biological Agency.

Moscow



References

1. Balabolkin M.I., Klebanova E.M., Kreminskaya V.M. Fundamental and clinical thyroidology: manual: textbook for the system of postgraduate professional education of doctors. Moscow: Medicine. 2007. – 814 p. - ISBN: 5-225-03893-X.

2. The Great Russian Encyclopedia / US Osipov. Moscow: The Great Russian Encyclopedia. 2015. – 766 p. - ISBN: 978-5-85270-365-1.

3. Duus P. Topical diagnosis in neurology. Anatomy. Physiology. Clinic / ed. OS Levin. Moscow: Practical medicine. 2018; 608 p. ISBN: 978-5-98811-306-5.

4. Leontiev M.A., Vodova A.V., Kravchuk S.V. The significance of neurohumoral regulation in the outcome of multiple organ failure syndrome in sepsis. Bulletin of Anesthesiology and Resus-citation. 2020; 17(5):80-86. DOI: 10.21292/2078-5658-2020-17-5-80-86.

5. Molotkov O.V., Efremenkov S.V., Reshed'ko V.V. Pathophysiology in questions and answers: a textbook. Smolensk: SAU. 1999. ISBN: 5-7977-0002-6.

6. Pathological physiology / ed. AD Ado, MA Ado, VI Pytsky et al. Moscow: Triad-X. 2000. ISBN: 5-8249-0023-X.

7. Sayfutdinov RG. The role of nitric oxide in diseases of internal organs (literature review). Bulletin of Modern Clinical Medicine. 2009; 2(3):48a-53. ISSN: 2071-0240.

8. Smirnov AN. Endocrine regulation: a textbook / edited by akad. RAS and RAMS VA Tkachuk. M.: GEOTAR-Media; 2009. ISBN: 978-5-9704-1012-7.

9. Sukhorukova E.G., Alekseeva O.S., Korzhevsky D.E. Catecholaminergic neurons of the mammalian brain and neuromelanin. Journal of Evolutionary Biochemistry and Physiology. 2014; 50(5):336-342. ISSN: 0044-4529.

10. Tuchina O.P. Neuro-immune interactions in the cholinergic anti-inflammatory pathway. Genes and Cells. 2020; 15(1):23-28. ISSN: 2313-1829.

11. Human physiology with the basics of pathophysiology / ed. by RF Schmidt, F Lang, M Heckmann; trans. from it. edited by MA Kamenskaya. Moscow: Laboratory of Knowledge. 2019; 2: 497. ISBN: 978-5-906828-31-6.

12. Endocrinology according to Williams. Neuroendocrinology / Sh Melmed, KS Polonsky, PR Larsen [et al]; ed. by II Dedova, GA Melnichenko. Moscow: GEOTAR-Media. 2019. ISBN: 978-5-91713-033-0.

13. Akrout, N. Mechanisms of brain signaling during sepsis / N. Akrout, T. Sharshar, D. Annane // Curr Neuropharmacol. – 2009. – Vol. 7 (4). – P. 296-301. – DOI: 10.2174/157015909790031175.

14. Bellinger, D.L. Autonomic regulation of cellular immune function / D.L. Bellinger, D. Lorton // Auton. Neurosci. Basic Clin. – 2014. – Vol. 182. – Р. 15-41. – DOI: 10.1016/j.autneu.2014.01.006.

15. Boonen, E. Endocrine responses to critical illness: novel insights and therapeutic implications / E. Boonen, G.V. den Berghe // J Clin Endocrinol Metab. – 2014. – Vol. 99, No 5. – Р. 1569-1582. – DOI: 10.1210/jc.2013-4115.

16. Briegel, J.A comparison of the adrenocortical response during septic shock and after complete recovery / J. Briegel, G. Scheelling, M. Haller [et al.] // Intensive Care Med. – 1996. – Vol. 22. – Р. 894-899. – DOI: 10.1007/BF02044113.

17. Brightwell, J.J. Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain / J.J. Brightwell, B.K. Taylor // Neuroscience. – 2009. – Vol. 160, No 1. – Р. 174-85. – DOI: 10.1016/j.neuroscience.2009.02.023.

18. Chatham, W.W. Glucocorticoid effects on the immune system [Electronic resource] / W.W. Chatham. – URL: https://www.uptodate.com/contents/glucocorticoid-effects-on-the-immune-system/print (date of request: 26.09.2021).

19. Choi, I.Y. Novel role of adrenergic neurons in the brain stem in mediating the hypothalamic-pituitary axis hyperactivity caused by prenatal alcohol exposure / I.Y. Choi, S. Lee, C. Rivier // Neuroscience. – 2008. – Vol. 155, No 3. – Р. 888-901. – DOI: 10.1016/j.neuroscience.2008.04.081.

20. Cintra, A. Evidence for thyrotropin-releasing hormone and glucocorticoid receptor-immunoreactive neurons in various preoptic and hypothalamic nuclei of the male rat / A. Cintra, K. Fuxe, A.C. Wikstrom [et al.] // Brain Res. – 1990. – Vol. 506. – P. 139-144. – DOI: 10.1016/0006-8993(90)91210-8.

21. Ciofi, P. Plasticity in expression of immunoreactivity for neuropeptide Y, enkephalins and neurotensin in the hypothalamic tubero-infundibular dopaminergic system during lactation in mice / P. Ciofi, W.R. Crowley, A. Pillez [et al.] // J Neuroendocrinol. – 1993. – Vol. 5, № 6. – Р. 599-602. – DOI: 10.1111/j.1365-2826.1993.tb00528.x

22. Dantzer, R. Cytokine-induced sickness behavior: a neuro-immune response to activation of innate immunity / R. Dantzer // Eur J Pharmacol. – 2004. – Vol. 11. – Р. 399-411. – DOI: 10.1016/j.ejphar.2004.07.040.

23. Day, H.E. W. Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1b / H. E.W. Day, E.J. Curran, Jr. S.J. Watson [et al.] // J Comp Neurol. – 1999. – Vol. 413. – Р. 113-128.

24. Dubuis, J.M. Human recombinant interleukin-1 beta decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats / J.M. Dubuis, J.M. Dayer, C.A. Siegrist-Kaiser [et al.] // Endocrinology. – 1988. – Vol. 123. – Р. 2175-2181.

25. Engblom, D. Prostaglandins as inflammatory messengers across the blood brain barrier / D. Engblom, M. Ek, S. Saha [et al.] // J Mol Med. – 2002. – Vol. 80. – Р. 5-15. – DOI: 10.1007/s00109-001-0289-z.

26. Galiano, M. Interleukin-6 (IL6) and cellular response to facial nerve injury : effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice / M. Galiano, Z. Q. Liu, R. Kalla [et al.] // Eur J Neurosci. – 2001. – Vol. 14. – Р. 327-341.

27. Ganong, W.F. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function / W.F. Ganong // Clin Exp Pharmacol Physiol. – 2000. – Vol. 27. – Р. 422-427. – DOI: 10.1046/j.1440-1681.2000.03259.x.

28. Gustafsson, J.A. Biochemistry, molecular biology, and physiology of the glucocorticoid receptor / J.A. Gustafsson, J. Carlstedt-Duke, L. Poellinger // Endocr Rev. – 1987. – Vol. 8, No 2. – Р. 185-234. – DOI: 10.1210/edrv-8-2-185.

29. Hökfelt, T. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain / T. Hökfelt, K. Fuxe, M. Goldstein [et al.] // Brain Res. – 1974. – Vol. 66. – P. 235-261. – DOI: 10.1016/0006-8993(74)90143-7.

30. Knowles, R.G. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat / R.G. Knowles, M. Salter, S.L. Brooks [et al.] // Biochem Biophys Res Commun. – 1990. – Vol. 172 (3). – Р. 1042-1048. – DOI: 10.1016/0006-291x(90)91551-3.

31. Koulakoff, A. Neurons and brain macrophages regulate connexin expression in cultured astrocytes / A. Koulakoff, W. Même, C.F. Calvo [et al.] // Cell Commun Adhes. – 2003. – Vol. 10. – Р. 407-411.

32. Li, S. Intracerebroventricular interleukin 6, macrophage inflammatory protein 1b, and IL-18: pyrogenic and PGE(2)-mediated? / S. Li, S. Goorha, L.R. Ballou [et al.] // Brain Res. – 2003. – Vol. 992. – P. 76-84. – DOI: 10.1016/j.brainres.2003.08.033.

33. Lu, J. Systemic inflammatory response following acute traumatic brain injury / J. Lu, S.J. Goh, P.Y. Tng [et al.] // Front Biosci (Landmark Ed). – 2009. – Vol. 14. – Р. 3795-813. – DOI: 10.2741/3489.

34. Mayhan, W.G. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase / W. G. Mayhan // Brain Res. – 1998. – Vol. 792. – Р. 353-357. – DOI: 10.1016/j.brainres.2004.05.102.

35. McCann, S.M. The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection / S.M. McCann, M. Kimura, S. Karanth [et al.] // Ann N Y Acad Sci. – 2000. – Vol. 917. – Р. 4-18. – DOI: 10.1111/j.1749-6632.2000.tb05368.x.

36. McKenna, N.J. Nuclear receptor coregulators: cellular and molecular biology / N.J. McKenna, R.B. Lanz, B.W. O'Malley // Endocr Rev. – 1999. – Vol. 20, No 3. – Р. 321-344. – DOI: 10.1210/edrv.20.3.0366.

37. Moore, R.Y. Noradrenaline-containing neuron systems. Handbook of Chemical Neuroanatomy. Classical Transmitters in the CNS / R. Y. Moore, J. P. Card; eds A Björklund, T Hökfelt. – Elsevier : Amsterdam. – 1984. – Vol. 2, Р. I. -Р. 123-156.

38. Morley, J.E. Neuroendocrine control of thyrotropin secretion / J.E. Morley // Endor Rev. – 1981. – Vol. 2. – P. 396-436. – DOI: 10.1210/edrv-2-4-396.

39. Murray, K. The cholinergic anti-inflammatory pathway revisited / K. Murray, C. Reardon // Neurogastroenterol Motil. – 2018. – Vol. 30, No 3. – DOI: 10.1111/nmo.13288.

40. Papadopoulos, M.C. Faecal peritonitis causes edema and neuronal injury in pig cerebral cortex / M.C. Papadopoulos, F.J. Lamb, R.F. Moss [et al.] // Clin Sci (Lond). – 1999. – Vol. 96. – Р. 461-466. – DOI: 10.1042/CS19980327.

41. Paterson, D. Nitric oxide and the autonomic regulation of cardiac excitability. The G.L. Brown Prize Lecture / D. Paterson // Exp Physiol. – 2001. – Vol. 86, No 1. – P. 1-12. – DOI: 10.1113/eph8602169.

42. Qian, Y.S. Effect of α7nAChR mediated cholinergic anti-inflammatory pathway on inhibition of atrial fibrillation by low-level vagus nerve stimulation / Y.S. Qian, Q.Y. Zhao, S.J. Zhang [et al.] // Zhonghua Yi Xue Za Zhi. – 2018. – Vol. 98, No 11. – Р. 855-859. – DOI: 10.3760/cma.j.issn.0376-2491.2018.11.013.

43. Reichlin, S. Neuroendocrinology of infection and the innate immune system / S. Reichlin // Recent Prog Horm Res. – 1999. – Vol. 54. – P. 133-181.

44. Reyes-Lagos, J.J. Neuroautonomic activity evidences parturition as a complex and integrated neuro-immune-endocrine process / J.J. Reyes-Lagos, C.I. Ledesma-Ramírez, A.C. Pliego-Carrillo [et al.] // Ann N Y Acad Sci. – 2018. – Vol. 1437, No 1. – Р. 22-30. – DOI: 10.1111/nyas.13860.

45. Sheng, J.G. Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain / J.G. Sheng, R.E. Mrak, W.S. Griffin // Acta Neuropathol. – 1998. – Vol. 95. – Р. 229-234. – DOI: 10.1007/s004010050792.

46. Sita, L.V. Connectivity pattern suggests that incerto-hypothalamic area belongs to the medial hypothalamic system / L.V. Sita, C.F. Elias, J.C. Bittencourt // Neuroscience. – 2007. – Vol. 148, No 4. – Р. 949-969. – DOI: 10.1016/j.neuro-science.2007.07.010.

47. Spath-Schwalbe, E. Endocrine effects of recombinant interleukin 6 in man / E. Spath-Schwalbe, H. Schrezenmeier, S. Bornstein [et al.] // Neuroendocrinology. – 1996. – Vol. 63. – P. 237-243. – DOI: 10.1159/000126963.

48. Watkins, A.D. Hierarchical cortical control of neuroimmunomodulatory pathways / A.D. Watkins // Neuropathol Appl Neurobiol. – 1994. – Vol. 20. – Р. 423-431.

49. Yamada, M. The cholinergic anti-inflammatory pathway: an innovative treatment strategy for respiratory diseases and their comorbidities / M. Yamada, M. Ichinose // Curr Opin Pharmacol. – 2018. – Vol. 40. – Р. 18-25. – DOI: 10.1016/j.coph.2017.12.003.


Review

For citations:


Altshuller N.E., Aleschenko E.I., Kutcyi M.B., Kruglyakov N.M. Effect of physical stressors on neuroendocrine response in critically ill patients. Yakut Medical Journal. 2022;(1):99-104. https://doi.org/10.1234/YMJ.2022.77.25

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)