Preview

Yakut Medical Journal

Advanced search

Biodegradable vascular patches: a comparative description of physicomechanical and hemocompatible properties

https://doi.org/10.25789/YMJ.2019.68.08

Abstract

We manufactured electrospun 1.5 mm vascular patches using polycaprolactone and polyhydroxybutirate/valerate, which were modified by different linear or cyclic RGD peptides (RGDK, AhRGD и c[RGDFK]) and 1,6- hexamethylenediamine or 4,7,10-trioxa-1,13-tridecanediamine. The physicomechanical and hemocompatible properties of the developed structures were studied. Human a.mammaria and xenopericardial flap “KemPeriplas-Neo”, widely used in the clinic for carotid endarterectomy, were used as comparison groups. It was revealed that PHBV / PCL polymer patches with and without RGD caused significantly less erythrocyte hemolysis and platelet aggregation than the xenopericardial flap “KemPeriplas-Neo”, which may indicate a high biocompatibility of polymers and modifying agents used to make vascular patches.

About the Authors

L. V. Antonova
Medical Sciences Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Antonova Larisa Valerevn – Doctor

Kemerovo

Head of Cell Technology Laboratory

650056, Kemerovo, Blvd. Stroitelei 39-45, Mob. 8-905-906-04-51



A. V. Mironov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Mironov Andrey Vladimirovich – Junior Researcher, Laboratory of Cell Technology

650044, Kemerovo, Str. Syvorova 18-2, Mob. 8-923-625-90-30



V. N. Silnikov
Chemical Sciences Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Silnikov Vladimir Nikolaevich – Doctor

Head of Organic Synthesis Laboratory

630090, Novosibirsk, Ave. Akademika Koptyuga 5-2, Сот. 8-905-930-81-85



T. V. Glushkova
Biological Sciences Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Glushkova Tatyana Vladimirovna – PhD

Researcher at the Laboratory of New Biomaterials

650061, Kemerovo, Ave. Shahterov, 62B-2, Mob. 8-923-606-97-18



E. O. Krivkina
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Krivkina Evgeniya Olegovna – Junior Researcher, Laboratory of Cell Technology

650024, Kemerovo, Str. Radischeva 15-7, Mob. 8-908-946-66-39



T. N. Akentieva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Akentieva Tatyana Nikolaevna – Junior Researcher, Laboratory of New Biomaterials

650061, Kemerovo, Str. Serebryannyi bor 7-50, Mob. 8-923-606-07-07



M. Yu. Khanova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Khanova Maryam Yurisovna – Junior Researcher, Laboratory of Cell Technology

650065, Kemerovo, Ave, Oktyabrskii 80 G – 30, Mob. 8-904-374-36-61



V. V. Sevostyanova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Sevostyanova Victoria Vladimirovna – PhD of Medical Sciences

Kemerovo Researcher, Laboratory of Cell Technology

650061, Kemerovo, Str. Serebryannyi bor, 1-27, Mob. 8-906-935-60-76



J. A. Kudryavtseva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kudryavtseva Julia Alexandrovna – Doctor of Medical Sciences

Kemerovo Head of the Department of Experimental and Clinical Cardiology

650071, Kemerovo, Str. Okryzhnaya 30 – 246, Mob. 8-905-902-61-84



L. S. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases; Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Barbarash Leonid Semenovich – Doctor of Medical Sciences, Professor, Academician Russian Academy of Sciences

Chief Researcher

650065, Kemerovo, Blvd. Stroitelei 28/1 – 23, Tel. 8(3842) 64-33-08



References

1. Modification of polycaprolactone scaffolds with vascular endothelial growth factors for potential application in development of tissue engineered vascular grafts /V.V. Sevostyanova, A.S. Golovkin, L.V. Antonova [et al.] //Genes & Cells. – 2015. -№ 1(10). – P. 91-97.

2. A morphological investigation of the polyhydroxybutyrate/valerate and polycaprolactone biodegradable small-diameter vascular graft biocompatibility / L.V. Antonova, R.A. Mukhamadiyarov, A.V. Mironov [et al.] //Genes & Cells. – 2015. - №2 (10). – P.71-77.

3. A meta-analysis of randomized trials comparing bovine pericardium and other patch materials for carotid endarterectomy / P. Texakalidis, S. Giannopoulos, N. Charisis [et al.] // J Vasc Surg. – 2018. – 68(4). – P.1241-56. DOI: 10.1016/j.jvs.2018.07.023

4. ASTM Hemolysis / B.S. Jolee Bartrom // NAMSA. – 2008. – P.1-12.

5. Atmospheric pressure plasma assisted immobilization of hyaluronic acid on tissue engineering PLA-based scaffolds and its effect on primary human macrophages / V.L. Kudryavtseva, K.S. Stankevich, A. Gudima [et al.] // Materials and Design. – 2017. – 127. – P.261-71. DOI: 10.1016/j.matdes.2017.04.079

6. Biocompatibility of Small-Diameter Vascular Grafts in Different Modes of RGD Modification / L.V. Antonova, V.N. Silnikov, V.V. Sevostyanova [et al.] // Polymers. – 2019. – 11(1). – P.174. DOI: 10.3390/polym11010174

7. Biological evaluation of medical devices. Part 4: Selection of tests for interaction with blood / NSAI standards // EN ISO 10993-4:2017

8. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules / L.V. Antonova, V.V. Sevostyanova, A.V. Mironov [et al.] // Complex Issues of Cardiovascular Diseases. − 2018. – 7(2). – P.25-36. DOI: 10.17802/2306-1278-2018-7-2-25-36

9. In vitro biocompatibility evaluation of bioresorbable copolymers prepared from L-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications / X. Shen, F. Su, J. Dong [et al.] // Journal of Biomaterials Science, Polymer Edition. – 2015. – 26(8). – P.497-514. DOI: 10.1080/09205063.2015.1030992

10. Long-term outcomes after stenting versus endarterectomy for treatment of symptomatic carotid stenosis: the international carotid stenting study (ICSS) randomised trial / L.H. Bonati, J. Dobson, R.L. Featherstone [et al.] // Lancet. – 2015. – 385(9967). – P.529-38. DOI: 10.1016/S0140-6736(14)61184-3

11. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow–derived cells and a hybrid biodegradable polymer scaffold / S-W. Cho, O. Jeon, J.E. Lim [et al.] // J Vasc Surg. – 2006. – 44(6). – P.1329-40. DOI: 10.1016/j.jvs.2006.07.032

12. Stem cell–derived, tissue-engineered pulmonary artery augmentation patches in vivo / B.A. Mettler, V.L. Sales, C.L. Stucken [et al.] // Ann Thorac Surg. – 2008. – 86(1). P.132-41. DOI: 10.1016/j.athoracsur.2008.02.074

13. Systematic review of guidelines for the management of asymptomatic and symptomatic carotid stenosis / A.L. Abbott, K.I. Paraskevas, S.K. Kakkos [et al.] // Stroke. – 2015. – 46(11). – P.3288-301. DOI: 10.1161/STROKEAHA.115.003390

14. Thromboelastometric and platelet responses to silk biomaterials / B. Kundu, C.J. Schlimp, S. Nürnberger [et al.] // Sci Rep. – 2014. – 4. – P.4945. DOI: 10.1038/srep04945

15. Tissue engineering at the blood-contacting surface: a review of challenges and strategies in vascular graft development / D. Radke, W. Jia, D. Sharma [et al.] // Adv Healthc Mater. – 2018. – 7(15). – P.e1701461. DOI: 10.1002/adhm.201701461.


Review

For citations:


Antonova L.V., Mironov A.V., Silnikov V.N., Glushkova T.V., Krivkina E.O., Akentieva T.N., Khanova M.Yu., Sevostyanova V.V., Kudryavtseva J.A., Barbarash L.S. Biodegradable vascular patches: a comparative description of physicomechanical and hemocompatible properties. Yakut Medical Journal. 2019;(4):35-39. https://doi.org/10.25789/YMJ.2019.68.08

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)