Результаты клинического применения методов динамической пневмоапланации роговицы при миопии
https://doi.org/10.25789/YMJ.2023.82.08
Аннотация
Внедрение в клиническую практику методов исследования, основанных на динамической пневмоапланации роговицы, существенно расширило возможности клинической (прижизненной) оценки «биомеханики» глазных структур при миопии. В настоящем обзоре в обобщенном плане представлены результаты применения методов пневмоапланации для оценки биомеханических показателей при исходной миопии и после ее лазерной коррекции.
Об авторах
С. Э. АветисовРоссия
Сергей Эдуардович Аветисов, д. м. н., проф., акад. РАН, научн. руковод.; зав. кафедрой
Москва
А. К. Дзамихова
Россия
Асият Касумовна Дзамихова, аспирант
Москва
Т. Ю. Шилова
Россия
Татьяна Юрьевна Шилова, д. м. н., проф.
Москва
Список литературы
1. Аветисов Э.С. Близорукость. 2-е изд. М.: Медицина, 1999. 288 с.
2. Антонюк В.Д., Кузнецова Т.С. Исследование биомеханических свойств роговицы на приборе CORVIS ST (Oculus, Германия) у пациентов с миопией и миопическим астигматизмом // Офтальмохирургия. 2020. №.4. С. 20– 28.
3. Иомдина Е.Н., Бауэр С.М., Котляр К.Е. Биомеханика глаза: теоретические аспекты и клинические приложения. М.: Реальное Время, 2015.
4. Оценка зависимости биомеханических свойств роговицы от топометрического и биометрического показателя / Е.Г. Солодкова, С.В. Балалин, В.П. Фокин [и др.] // Современные проблемы науки и образования. 2021. №. 3. doi: 10.17513/spno.30895
5. Ali N.Q., Patel D.V., McGhee C.N. Biomechanical Responses of Healthy and Keratoconic Corneas Measured Using a Noncontact Scheimpflug-based Tonometer // Invest Ophthalmol Vis Sci. 2014. №.55. P.3651–3659. doi: 10.1167/iovs.13-13715
6. Assessment of corneal biomechanical parameters in myopes and emmetropes using the Corvis ST / R. Lee, R.T. Chang, I.Y. Wong [et al.] // Clin Exp Optom. 2016. №. 99(2). P. 157-162. doi: 10.1111/cxo.12341.
7. Association between corneal biomechanical properties and myopia in Chinese subjects / Z. Jiang, M. Shen, G. Mao [et al.] // Eye (Lond). 2011. №. 25(8). P. 1083-1089. doi: 10.1038/eye.2011.104.
8. Bailey MD, Zadnik K. Outcomes of LASIK for myopia with FDA-approved lasers // Cornea. 2007. №.26. P. 246–254. doi: 10.1097/ICO.0b013e318033dbf0.
9. Bailey MD, Zadnik K. Outcomes of LASIK for myopia with FDA-approved lasers // Cornea. 2007. №. 26. P. 246–254. doi: 10.1097/ICO.0b013e318033dbf0.
10. Biomechanical properties of axially myopic cornea / C. Altan, B. Demirel, E. Azman [et al.] // Eur J Ophthalmol. 2012. №. 22(7). P. 24-28. doi: 10.5301/ejo.5000010
11. Biomechanical properties of the cornea in high myopia. / M. Shen, F. Fan, A. Xue [et al.] // Vision Res. 2008. №. 48(21). P. 2167-2171. doi: 10.1016/j.visres.2008.06.020.
12. Galletti J.G., Pförtner T., Bonthoux F.F. Improved keratoconus detection by ocular response analyzer testing after consideration of corneal thickness as a confounding factor // J Refract Surg. 2012. №. 28(3). P. 202-208. doi: 10.3928/1081597X-20120103-03.
13. Chang P., Chang S., Wang J. Assessment of corneal biomechanical properties and intraocular pressure with the Ocular Response Analyzer in childhood myopia. // Br J Ophthalmol. 2010. №. 94(7). P. 877-881. doi: 10.1136/bjo.2009.158568.
14. Changes in Ocular Response Analyzer parameters after LASIK. / S. Chen, D. Chen, J. Wang // J Refract Surg. 2010. №. 26(4). P. 279–288 doi: 10.3928/1081597X-20100218-04
15. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. / J.S. Pepose, S.K. Feigenbaum, M.A. Qazi // Am J Ophthalmol. 2007. №.143(1). P.39-47. doi: 10.1016/j.ajo.2006.09.036
16. Corneal biomechanical changes in eyes with small incision lenticule extraction and laser assisted in situ keratomileusis / I.M. Osman, H.A. Helaly, M. Abdalla [et al.] // BMC Ophthalmol. 2016. №.16. P. 123. doi: 10.1186/s12886-016-0304-3
17. Corneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas. / G. Nemeth, E. Szalai, Z. Hassan [et al.] // Int J Ophthalmol. 2017. №. 10(2). P. 217–222. doi: 10.18240/ijo.2017.02.06.
18. Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. / I.B. Pedersen, S. Bak-Nielsen, A.H. Vestergaard [et al.] // Graefes Arch Clin Exp Ophthalmol. 2014. №. 252(8). P. 1329-1335. doi: 10.1007/s00417-014-2667-6
19. Corneal Biomechanical Properties in High Myopia Measured by Dynamic Scheimpflug Imaging Technology. / M. He, W. Wang, H. Ding [et al.] // Optom Vis Sci. 2017. №.94(12). P. 1074-1080. doi: 10.1097/OPX.0000000000001152.
20. Corneal Biomechanical Properties in Myopic Eyes Measured by a Dynamic Scheimpflug Analyzer. / J. Wang, Y. Li Y, Y. Jin [et al.] // J Ophthalmol. 2015. doi: 10.1155/2015/161869.
21. Corneal Biomechanical Properties in Varying Severities of Myopia / M.R. Sedaghat, H. Momeni-Moghaddam, A. Azimi [et al.] // Front Bioeng Biotechnol. 2021. №. 21(8). doi: 10.3389/fbioe.2020.595330.
22. Corneal biomechanical metrics of healthy Chinese adults using Corvis ST / W. Wang, M. He, H. He [et al.] // Cont Lens Anterior Eye. 2017. №.40(2). P. 97–103. doi: 10.1016/j.clae.2016.12.003
23. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared and Scheimpflug imaging analysis in normal eyes. / T. Huseynova, G.O. Waring, C. Roberts [et al.] // Am J. Ophthalmol. 2014. №. 157(4). P. 885-893. doi: 10.1016/j.ajo.2013.12.024
24. Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. / L. Lim, G. Gazzard, Y.H. Chan [et al.] // Invest Ophthalmol Vis Sci. 2008. №. 49(9). P. 3852-3857. doi: 10.1167/iovs.07-1670.
25. Corneal biomechanical effects: small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis / D. Wu, Y. Wang, L. Zhang [et al.] // J Cataract Refract Surg. 2014. №. 40. P. 954–962. Doi: 10.1016/j.jcrs.2013.07.056
26. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. / Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL. // J Cataract Refract Surg. 2007. №. 33(8). P. 1371-1375. doi: 10.1016/j.jcrs.2007.04.021.
27. Corneal Deformation Parameters Provided by the Corvis-ST Pachytonometer in Healthy Subjects and Glaucoma Patients / M.L. Salvetat, M. Zeppieri, C. Tosoni [et al.] // J Glaucoma. 2015. №.24. P. 568–574. doi: 10.1097/IJG.0000000000000133
28. Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) report no. 4. / Y. Song, N. Congdon, L. Li [et al.] // Am J Ophthalmol. 2008. №. 145(5). P. 819-826. doi: 10.1016/j.ajo.2007.12.034
29. Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extraction and femtosecond laser-assisted LASIK: A prospective fellow eye study / A. Agca, E.B. Ozgurhan, A, Demirok [et al.] // Cont Lens Anterior Eye. 2014. №.37(2). P.77-80. doi: 10.1016/j.clae.2013.05.003
30. Comparison of Corneal Biological Healing After Femtosecond LASIK and Small Incision Lenticule Extraction Procedure. / L. Xia, J. Zhang, J. Wu [et al.] // Curr Eye Res. 2016. №. 41(9). P. 1202-1208. doi: 10.3109/02713683.2015.1107590.
31. Comparison of the changes in corneal biomechanical properties after photorefractive keratectomy and laser in situ keratomileusis. / K. Kamiya, K. Shimizu, F. Ohmoto // Cornea. 2009. №. 28. P. 765–769. doi: 10.1097/ICO.0b013e3181967082
32. Comparison of the change in posterior corneal elevation and corneal biomechanical parameters after small incision lenticule extraction and femtosecond laser-assisted LASIK for high myopia correction. / Wang B, Zhang Z, Naidu RK [et al.] // Cont Lens Anterior Eye. 2016. №. 39(3). P. 191-196 doi: 10.1016/j.clae.2016.01.007.
33. Comparison of Changes in Corneal Biomechanical Properties after Photorefractive Keratectomy and Small Incision Lenticule Extraction. / Y. Yıldırım, O. Ölçücü, A. Başcı [et al.] // Turk J Ophthalmol. 2016. №.46(2). P. 47-51. doi: 10.4274/tjo.49260.
34. Differences in the corneal biomechanical changes after SMILE and LASIK. / D. Wang, M. Liu, Y. Chen [et al.] // J Refract Surg. 2014. №. 30. P. 702–707. doi: 10.3928/1081597X-20140903-09.
35. Dynamic ultra-high speed scheimpflug imaging for assessing corneal biomechanical properties. / R. Jr. Ambrosio, I. Ramos, A. Luz [et al.] // Rev Bras Oftalmol. 2013. №. 72. P. 99–102
36. Effect of pathological myopia on biomechanical properties: a study by ocular response analyzer. / V. Öner, M. Taş, E. Özkaya, Y. Oruç // Int J Ophthalmol. 2015. №. 18(2). P. 365-368. doi: 10.3980/J.ISSN.2222-3959.2015.02.27.
37. Guo H., Hosseini-Moghaddam S.M., Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK : a systematic review and meta-analysis // BMC Ophthalmol. 2019. №. 1(1). P. 167. doi: 10.1186/s12886-019-1165-3.
38. Hon Y., Lam A.K. Corneal deformation measurement using Scheimpflug noncontact tonometry // Optom Vis Sci. 2013. №. 90(1). P. 1-8. doi: 10.1097/OPX.0b013e318279eb87.
39. Identification of biomechanical properties of the cornea: the ocular response analyzer / N. Terai, F. Raiskup, M. Haustein [et al.] // Curr Eye Res. 2012. №.37(7). P.553–562. doi: 10.3109/02713683.2012.669007
40. Influence of pachymetry and intraocular pressure on dynamic response parameters in healthy patients / R. Vinciguerra, A. Elsheikh, C.J. Roberts [et al.] // J. Refract Surg. 2016. №. 32. P. 550-561. doi: 10.3928/1081597X-20160524-01
41. Intraocular pressure changes and relationship with corneal biomechanics after SMILE and FS-LASIK / H. Li, Y. Wang, R. Dou [et al.] // Invest Ophthalmol Vis Sci. 2016. №. 57. P. 4180-4186. Doi: 10.1167/iovs.16-19615.
42. Introduction of Two Stiffness Parameters at Interpretation of Air Puff Induced Biomechanical Deformation Response Parameters with a Dinamic Scheimpflug Analyser. / С.J. Roberts, A.M. Mahmoud, J.P. Bons [et al.] // Journal of Refract Surgery. 2017. №. 33(4). P. 266-273. doi: 10.3928/1081597X-20161221-03
43. Kenia V.P., Kenia R.V., Pirdankar O.H. Association between corneal biomechanical parameters and myopic refractive errors in young Indian individuals // Taiwan J Ophthalmol. 2020. №. 10(1). P. 45-53. doi: 10.4103/tjo.tjo_15_19.
44. Lawless M, Hodge C. LASIK // Int Ophthalmol Clin. 2013. №.53. P.111-128. doi: 10.1097/IIO.0b013e318271346e.
45. Luce D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer // J Cataract Refract Surg. 2005. №.31(1). P.156–162. doi: 10.1016/j.jcrs.2004.10.044.
46. Luce D. Methodology for corneal compensated IOP and corneal resistance factor for an ocular response analyzer // Invest Ophthalmol Vis Sci. 2006. №. 47. E-Abstract 2266
47. Management of post-photorefractive keratectomy pain. / F.A. Woreta, A. Gupta, B. Hochstetler [et al.] // Surv Ophthalmol. 2013. №. 58(6). P. 529-535. doi: 10.1016/j.survophthal.2012.11.004.
48. Mysore N., Krueger R. Advances in Refractive Surgery: May 2013 to June 2014 // Asia Pac J Ophthalmol (Phila). 2015. №. 4(2). P. 112-120. doi: 10.1097/APO.0000000000000117.
49. The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature / R. Asaoka, S. Nakakura, H. Tabuchi, [et al.] // PLoS One. 2015. №.10. e140385. doi: 10.1371/journal.pone.0140385
50. Tomás-Juan J., Murueta-Goyena Larrañaga A., Hanneken L. Corneal Regeneration After Photorefractive Keratectomy: A Review // J Optom. 2015. №.8(3). P.149-169. doi: 10.1016/j.optom.2014.09.001.
51. Wang W., Du S., Zhang X. Corneal Deformation Response in Patients with Primary Open-angle Glaucoma and in Healthy Subjects Analyzed by Corvis ST // Invest Ophthalmol Vis Sci. 2015. №. 56. P. 5557–5565. doi: 10.1167/iovs.15-16926
52. What biomechanical properties of the cornea are relevant for the clinician? / A. Kotecha // Surv Ophthalmol. 2007. №. 52(2). P. 109-114. doi: 10.1016/j.survophthal.2007.08.004
53. Yang E., Roberts C.J., Mehta J.S. A Review of Corneal Biomechanics after LASIK and SMILE and the Current Methods of Corneal Biomechanical Analysis // J Clin ExpOphthalmol. 2015. №. 6. P. 507. doi: 10.4172/2155-9570.1000507
Рецензия
Для цитирования:
Аветисов С.Э., Дзамихова А.К., Шилова Т.Ю. Результаты клинического применения методов динамической пневмоапланации роговицы при миопии. Якутский медицинский журнал. 2023;(2):33-37. https://doi.org/10.25789/YMJ.2023.82.08
For citation:
Avetisov S.E., Dzamikhova A.K., Shilova T.Y. Results of clinical application of dynamic pneumoapplanation methods of the cornea in myopia. Yakut Medical Journal. 2023;(2):33-37. https://doi.org/10.25789/YMJ.2023.82.08