Preview

Yakut Medical Journal

Advanced search

The relationship between gene expression of cytoskeletal protein genes and the epithelial-mesenchymal vimentin marker in squamous cell carcinoma of the larynx

https://doi.org/10.25789/YMJ.2025.90.04

Abstract

Aggressive laryngeal squamous cell carcinoma (LSCC) is characterized by a high metastatic potential, which is closely associated with epithelial-mesenchymal transition (EMT). Initiation of EMT is manifested by changes in the expression of some genes, including those associated with cytoskeleton reorganization. Currently, there are no effective methods for predicting metastasis in LSCC patients. In this regard, the study of SCC molecular characteristics remains relevant. In our study we assessed the relationship between the mRNA level of vimentin (VIM) and mRNA of cytoskeleton proteins: fascin-1 (FSCN1), ezrin (EZR), cofilin-1 (CFL1), profilin-1 (PFN1) and adenylyl cyclase-associated protein 1 (CAP1) in LSCC tumor tissue. The analysis was carried out using RT-PCR in paired samples from LSCC patients with and without lymph node metastases. The PFN1 mRNA level was found to be 6.3 times higher in LSCC patients with lymph node metastases than in patients without metastases. The EZR mRNA level was 17 times lower in patients with stage T3-4N0-2M0 LSCC than in patients with stage T1-2N0-1M0 LSCC. High VIM mRNA levels were associated with high FSCN1 and CAP1 mRNA levels and contributed to a stronger association between CFL1 and PFN1 mRNA levels. Thus, no direct relationship between the level of VIM as a marker of EMP and metastasis in a sample of LSCC patients was found. However, the detected relationships between the levels of cytoskeleton protein mRNA and vimentin mRNA may indicate an active reorganization of the cytoskeleton, which ensures high migration and proliferative activity of malignant cells of LSCC.

About the Authors

G. V. Kakurina
НИИ онкологии Томского НИМЦ РАН; СибГМУ МЗ РФ
Russian Federation


E. E. Sereda
НИИ онкологии Томского НИМЦ РАН; СибГМУ МЗ РФ
Russian Federation


O. V. Cheremisina
НИИ онкологии Томского НИМЦ РАН
Russian Federation


E. A. Sidenko
НИИ онкологии Томского НИМЦ РАН
Russian Federation


N. V. Yunusova
НИИ онкологии Томского НИМЦ РАН; СибГМУ МЗ РФ
Russian Federation


D. A. Korshunov
НИИ онкологии Томского НИМЦ РАН
Russian Federation


O. Vaizova
НИИ онкологии Томского НИМЦ РАН
Russian Federation


I. V. Kondakova
НИИ онкологии Томского НИМЦ РАН
Russian Federation


E. L. Choynzonov
НИИ онкологии Томского НИМЦ РАН
Russian Federation


References

1. Kristó, I., Bajusz, I., Bajusz, C., et al. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 2016. V. 145. P. 373–388. https://doi.org/10.1007/s00418-015-1400-9.

2. Mokin YI, Povarova OI, Antifeeva IA., et al. Bioinformatics Analysis of Actin Interactome: Characterization of the Nuclear and Cytoplasmic Actin-Binding Proteins. Protein J. 2024. V. 43(4). P. 675-682. doi: 10.1007/s10930-024-10207-y.

3. Brambilla D, Fais S. The Janus-faced role of ezrin in "linking" cells to either normal or metastatic phenotype. Int J Cancer. 2009. V. 125(10). P. 2239-45. doi: 10.1002/ijc.24734.

4. Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells. 2023. V. 12(12). P. 1620. doi: 10.3390/cells12121620.

5. Chikina A.S., Alexandrova A.Y. An In Vitro System to Study the Mesenchymal-to-Amoeboid Transition. Methods in molecular biology (Clifton, N.J.). 2018. V. 1749. P. 21-27. doi: 10.1007/9781-4939-7701-7_3

6. Coumans J. V.F., Davey R.J. and Moens P. D.J. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev. 2018. V. 10(5). P. 1323–1335. doi: 10.1007/s12551-018-0445-0.

7. Datta A, Deng S, Gopal V, et al. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers (Basel). 2021.V. 13(8). P. 1882. doi: 10.3390/cancers13081882.

8. Santamaria P.G., Moreno-Bueno G., Portillo F. Mol Oncol. 2017. V. 11(7). P. 718–738. doi: 10.1002/1878-0261.12091.

9. G.V. Kakurina, I.V. Kondakova, L.V. Spirina, et al. Expression of Genes Encoding Cell Motility Proteins during Progression of Head and Neck Squamous Cell Carcinoma. Bulletin of Experimental Biology and Medicine. 2018. Vol. 166, No. 2. P. 250-252. DOI 10.1007/s10517-018-4325-1.

10. Zhu Y, Zhang X, Chen Y [et al.] Ezrin's role in gastric cancer progression: Implications for immune microenvironment modulation and therapeutic potential. Heliyon. 2024. V. 10(5). P. e27155. doi: 10.1016/j.heliyon.2024.e27155.

11. Yang, J., Antin, P., Berx, G. [et al.] Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2020.V.21. P. 341–352. https://doi.org/10.1038/s41580-020-0237-9

12. Sharma P, Alsharif S, Fallatah A [et al.] Intermediate Filaments as Effectors of Cancer Development and Metastasis: A Focus on Keratins, Vimentin, and Nestin. Cells. 2019. V. 8(5). P. 497. doi: 10.3390/cells8050497.

13. Kalluri R., Weinberg R. A. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009. V.119(6). P. 1420-1428. doi: 10.1172/jCI39104.

14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001. V. 25(4). P. 402-408. doi: 10.1006/meth.2001.1262.

15. Morris H.T.& Machesky L.M. Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract. British Journal of Cancer. 2015. V. 112. P. 613–620. doi: 10.1038/bjc.2014.658.

16. Hinojosa LS, Holst M, Baarlink C [et al.] MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion. J Cell Biol. 2017. V. 216(10). P. 3087-3095. doi: 10.1083/jcb.201702010.

17. Peltanova B., Raudenska M., and Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer. 2019. V. 18. P. 63. doi: 10.1186/s12943-019-0983-5.

18. Joshi P., Riley D.R. J., Khalil J.S., et al. The membrane-associated fraction of cyclase associate protein 1 translocates to the cytosol upon platelet stimulation. Sci Rep 2018. V.8. P. 10804. doi: 10.1038/s41598-018-29151-w.

19. Michie KA, Bermeister A, Robertson NO., et al. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int J Mol Sci. 2019. V. 20(8). P. 1996. doi: 10.3390/ijms20081996.


Review

For citations:


Kakurina G.V., Sereda E.E., Cheremisina O.V., Sidenko E.A., Yunusova N.V., Korshunov D.A., Vaizova O., Kondakova I.V., Choynzonov E.L. The relationship between gene expression of cytoskeletal protein genes and the epithelial-mesenchymal vimentin marker in squamous cell carcinoma of the larynx. Yakut Medical Journal. 2025;(2):19-23. https://doi.org/10.25789/YMJ.2025.90.04

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)