Genetic aspects of regulation of circadian rhythms as a factor in stress resistance
https://doi.org/10.25789/YMJ.2020.72.27
Abstract
The article presents the results of the analysis of the literature data on the molecular genetic mechanisms of control and regulation of circadian rhythms that determine the chronotype of a person.
It has been established that disturbance of circadian rhythms arising as a result of psychoemotional and physical stress expressed in degree and / or duration, can lead to a decrease in the body's resistance to stress factors with the subsequent development of maladjustment processes, which in turn can be a trigger mechanism for the onset of the development of such pathological conditions as diseases of the cardiovascular system, gastrointestinal tract, autoimmune, mental, neurodegenerative, oncological and other diseases.
According to the results of numerous studies, the molecular genetic control of circadian rhythms consists of interacting positive and negative feedbacks of regulatory loops of clock genes, such as genes Bmal1, Clock, Per1, Per2, Per3, TIM, Npas2, Cry1 and Cry2, Csnk1d, Csnk1e, Rev-erbα, Rora, Bhlhe40, Bhlhe41, as well as genes FBXL3, FTO, MADD, CYP2A6, ARNTL, Mel1a, Mel1b and GPR50. The transcription factors encoded by these genes, enzymes, transporters, prohormones, signaling and other proteins are involved in regulation of daily frequency.
Despite the fact that the main components of the molecular genetic mechanisms of circadian rhythms are already known, the issue of regulating their work remains relevant today. The results of studies carried out on different populations with respect to individual polymorphic variants of genes are not always unambiguous and require a more detailed study, since it is the result of the interaction of genes that can determine their phenotypic effect.
Thus, understanding the molecular mechanisms and identifying genetic markers that cause disturbances in circadian rhythms is an important step in the development of methods aimed at preventing and correcting pathological conditions caused by maladjustment processes.
About the Authors
N. A. SolovievaRussian Federation
Solovieva Natalya Alekseevna - candidate of medical sciences, senior researcher of the Institute for Biological Problems of Cryolithozone
O. N. Kolosova
Russian Federation
Kolosova Olga Nikolaevna - Doctor of Biological Sciences, Professor, Chief Researcher of the Institute for Biological Problems of Cryolithozone
References
1. Anisimov V.N. Epiphysis, biorhythms and aging of the body / V.N. Anisimov // Advances fiziol. sciences. – 2010. - T. 39 (4). - S. 40–65.
2. Lopatina N.G. Hypothesis of nervous regulation of the process of realization of hereditary information / N.G. Lopatina, G.P. Smirnova, V.V. Ponomarenko // Problems of higher nervous activity and neurophysiology. Ed. N.F. Suvorov. - L., 1975. - Р. 107-121.
3. Ushakov I.B. Human adaptive potential / I.B. Ushakov // Bulletin of the Russian Academy of Medical Sciences. - 2004. - No. 3.- S. 8-13.
4. Bedrosian T. Endocrine effects of circadian disruption / T. Bedrosian, L. Fonken, R. Annu Nelson // Rev. Physiol. - 2017. - Vol. 78.- P.109-131. DOI: 10.1146/annurev-physiol-021115-105102
5. Breakpoints of time in bed, midpoint of sleep, and social jetlag from infancy to early adulthood / C. Randler, C. Vollmer, N. Kalb et al. // Sleep Med. - 2019. - Vol. 57(80). - P. 86. DOI:10.1016/j.sleep.2019.01.023
6. Ekmekcioglu C. The melatonin receptor subtype MT2 is present in the human cardiovascular system / C. Ekmekcioglu, T. Thalhammer, S. Humpeler // J. Pineal. Res. - 2003. - Vol. 35 (1) :40-4.
7. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms / E. Samuel, M. Jacqueline, Andrew R Wood et al. // Nature Communications. – 2019. - Vol. 10. – P. 343. DOI: 10.1038/s41467-018-08259-7.
8. Konopka R. Clock mutants in Drozophila melanogaster // R.Konopka, S. Benzer // Proc. Natl. Acad. Sci. U.S.A. - 1971. - Vol. 68. - P.2112-2116.
9. Longitude position in a time zone and cancer risk in the United States / F.Gu, S. Xu, S. Devesa et al. // Cancer Epidemiol Prev Biomark. - 2017. - Vol. 26. - P.1306–1311. DOI: 10.1158/1055-9965.EPI-16-1029.
10. Martha H. Genetics of Circadian Rhythms / H. Martha, S. Kazuhiro, J.Peng // Neurol Clin. - 2019. - Vol. 37(3). - P.487-504. DOI: 10.1016/j.ncl.2019.05.002.
11. Musiek E. Circadian clock disruption in neurodegenerative diseases: cause and effect? / E. Musiek // Front. Pharmacol. - 2015. - Vol. 6 (29). - P. 40–44.
12. Pittendrigh C. Temporal organization: reflections of a Darwinian clock-watcher / C. Pittendrigh // Ann. Rev. Physiol. - 1993. - Vol. 55(1). - P.17-54.
13. Rijo-Ferreira F. Genomics of circadian rhythms in health and disease / F. Rijo-Ferreira, J. Takahashi // Genome Med.- 2019.- №11(1). - Vol.82. DOI: 10.1186/s13073-019-0704-0.
14. Rönnlund M. Time perspective biases are associated with poor sleep quality, daytime sleepiness, and lower levels of subjective well-being among older adults / M. Rönnlund, M. Carelli // Front Psychol. - 2018. - Vol. 9. DOI:10.3389/fpsyg.2018.01356.
15. Savvateeva-Popova E. Stress and genome lability: Drosophyla and Rat genetic models. In: Proceedings of the International Norway-Russian Startup PHAsE / E. Savvateeva-Popova, N. Dyuzhikova // Seminar “Physiological mechanisms of humans and animals in the processes of adaptation to environmental changes”. Saint Petersburg. - 2017. - P. 18-19.
16. Selye H. Conditioning by corticoids for the production of cardiac lesions with noradrenaline / H. Selye, E. Bajusz // Acta Endocrinol. - 1959. - Vol. 30. - P. 183–194.
17. Social jetlag and menstrual symptoms among female university students / Y. Komada, M. Ikeda Sato et al. // Chronobiol Int. - 2019. - Vol.36(2). - P.258–264. DOI:10.1080/07420528.2018.1533561.
18. The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: the new hoorn study / A. Koopman, S. Rauh, E. Van‘t Riet et al. // J. Biol. Rhythms. - 2017. - Vol. 32(4). - P.359–368. DOI: 10.1177/0748730417713572.
19. The genetics of circadian rhythms, sleep and health / A. Jagannath, L. Taylor, Z. Wakaf et al. // Human Molecular Genetics. - 2017. - Vol. 26. - P.128 –138. DOI: 10.1093/hmg/ddx240
Review
For citations:
Solovieva N.A., Kolosova O.N. Genetic aspects of regulation of circadian rhythms as a factor in stress resistance. Yakut Medical Journal. 2020;(4):112-115. https://doi.org/10.25789/YMJ.2020.72.27