Биомаркеры эпилепсии: микроРНК
https://doi.org/10.25789/YMJ.2020.72.26
Аннотация
В обзоре литературы рассматривается использование микроРНК как возможного биомаркера эпилепсии.
Представленные исследования показали, что микроРНК могут быть вовлечены в процесс эпилептогенеза путем регулирования воспалительного ответа, апоптоза нейронов и факторов транскрипции, участвующих в дифференцировке клеток. Биологические жидкости (кровь и ликвор) пациентов с эпилепсией показали различия в количестве циркулирующих микроРНК, что, возможно, позволит в дальнейшем использовать микроРНК как диагностический биомаркер. Последние открытия обеспечивают богатый источник новых мишеней микроРНК, но остаются существенные проблемы изучения их роли в патогенезе и возможности применения в клинической практике.
Об авторах
М. Р. СапроноваРоссия
Сапронова Маргарита Рафаильевна – к.м.н., доцент ИПО
К. Д. Яковлева
Россия
Яковлева Кристина Дмитриевна – аспирант
А. А. Усольцева
Россия
Усольцева Анна Александровна - клинический ординатор, лаборант
Ю. С. Панина
Россия
Панина Юлия Сергеевна – н.с.
Д. В. Дмитренко
Россия
Дмитренко Диана Викторовна – д.м.н., зав. Кафедрой
С. Н. Зобова
Россия
Зобова Светлана Николаевна – к.м.н., н.с. ИПО
Список литературы
1. Ассоциация носительства полиморфизмов rs1143634 и rs16944 гена Il-1B и rs6265 гена BDNF с височной эпилепсией / Ю.С.Панина, Д.В.Дмитренко, Н.А. Шнайдер [и др.] //Неврология, нейропсихиатрия, психосоматика. – 2019. – №11(2). – С. 46-51. DOI: 10.14412/2074-2711-2019-2-46-51
2. Биомаркеры эпилепсии / К.Д. Яковлева, М.Р. Сапронова, А.А. Усольцева [и др.] // Якутский медицинский журнал. – 2019. – № 4(68).– C. 99-102
3. Механизмы вальпроат-индуцированного тератогенеза / Д.В. Дмитренко, Н.А. Шнайдер, И.Г. Строцкая [и др.] // Неврология, нейропсихиатрия, психосоматика.– 2017. – №9 (1). – С. 89-96. DOI: 10.14412/2074-2711-2017-1S-89-96.
4. МикроРНК как регуляторы эффектов ультрафиолетового излучения в клетках кожи / Т. Г. Рукша, Е. Ю. Сергеева, Н. В. Палкина [и др.] // Цитология. – 2016. – №58(10). – C. 733-742.
5. Chandradoss SD, Schirle NT, Szczepaniak M et al. A dynamic search process underlies microRNA targeting. Cell. 2015; 162: 96–107. DOI: 10.1016 / j. cell.2015.06.032.
6. Kaalund SS, Veno MT, Bak M et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance. Epilepsia. 2014; 55: 2017–2745. DOI: 10.1111/epi.12839
7. Cui L, Tao H, Wang Y et al. A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure. 2015; 27: 60–65. DOI: 10.1016/j.seizure.2015.02.032
8. Panjwani N, Wilson MD, Addis L et al. A microRNA-328 binding site in PAX6 is associated with centrotemporal spikes of rolandic epilepsy. Ann Clin Trans Neurol. 2016; 3: 512–522. DOI: 10.1002/acn3.320
9. Pitkanen A, Loscher W, Vezzani A et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016; 15:843–856. DOI: 10.1016/S1474-4422(16)00112-5
10. Manna I, Labate A, Borzi G et al. An SNP site in pri-miR-124, a brain expressed miRNA gene, no contribution to mesial temporal lobe epilepsy in an Italian sample. Neurol Sci 2016; 37: 1335–1339. DOI: 10.1007/s10072-016-2597-7
11. Balosso S, Maroso M, Sanchez-Alavez M et al. A Novel Non-Transcriptional Pathway Mediates the Proconvulsive Effects of interleukin1beta. Brain. 2008; 131(12):3256-3265. DOI: 10.1093/brain/awn271
12. Liu DZ, Tian Y, Ander BP et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010; 30: 92–101. DOI: 10.1038/jcbfm.2009.186
13. Bartel DP. Metazoan MicroRNAs. Cell. 2018; 173:20–51. DOI: 10.1016/j.cell.2018.03.006
14. Brennan GP, Henshall DC. MicroRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 2018; 667: 47–52. DOI: 10.1016/j.neulet.2017.01.017
15. Cava C, Manna I, Gambardella A. Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. Mol Ther Nucleic Acids. 2018; 13: 275-290. DOI: 10.1016/j.omtn.2018.09.008
16. Covanis A, Guekht A, Li S. From Global Campaign to Global Commitment: The World Health Assembly's Resolution on Epilepsy. Epilepsia. 2015; 56(11):1651-1657. DOI: 10.1111/epi.13192
17. Miller-Delaney SF, Bryan K, Das S et al. Differential DNA methylation profi les of coding and non-coding genes defi ne hippocampal sclerosis in human temporal lobe epilepsy. Brain. 2015; 138: 616–631. DOI: 10.1093/brain/awu373
18. Brennan GP, Dey D, Chen Y et al. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-de pendent gene networks. Cell Rep. 2016; 14: 2402–2412. DOI: 10.1016/j.celrep.2016.02.042
19. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012; 149: 515–524. DOI: 10.1016/j.cell.2012.04.005
20. Li C, Li S, Zhang F et al. Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE - / - Mice. Biochem. Biophys. Res. Commun. 2018; 495:1922–1929. DOI: 10.1016/j.bbrc.2017.11.195
21. Aronica E, Fluiter K, Iyer A et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010; 31: 1100–1107. DOI: 10.1111/j.1460-9568.2010.07122.x.
22. McKiernan CR, Jimenez-Mateos ME, Sano T et al. Expression Profiling the microRNA Response to Epileptic Preconditioning Identifies miR-184 as a Modulator of Seizure-Induced Neuronal Death. Exp Neurol. 2012; 237(2):346-354. DOI: 10.1016/j.expneurol.2012.06.029
23. Kan AA, van Erp S, Derijck AA et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci. 2012; 69: 3127–3145. DOI: 10.1007/s00018-012-0992-7
24. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014; 15: 509–524. DOI: 10.1038/nrm3838
25. Hegde M, Lowenstein DH. The search for circulating epilepsy biomarkers. BiomarkMed. 2014; 8: 413–427. DOI: 10.2217/bmm.13.142
26. Henshall DC. MicroRNA and epilepsy: Profiling, functions and potential clinical applications. Curr Opin Neurol. 2014; 2: 199-205. DOI: 10.1097/WCO.0000000000000079
27. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front. Mol. Neurosci. 2013; 6: 1-11. DOI: 10.3389/fnmol.2013.00037
28. Huang W, Li Z, Zhao L et al. Simvastatin Ameliorate Memory Deficits and Inflammation in Clinical and Mouse Model of Alzheimer's Disease via Modulating the Expression of miR-106b. Biomed Pharmacother. 2017; 92:46-57. DOI: 10.1016/j.biopha.2017.05.060
29. Sun J, Cheng W, Liu L et al. Identification of serum miRNAs differentially expressed in human epilepsy at seizure onset and post-seizure. Mol. Med. Rep. 2016; 14: 5318–5324. DOI:10.3892/mmr.2016.5906
30. Jessberger S, Parent MJ. Epilepsy and Adult Neurogenesis. Cold Spring Harb Perspect Biol. 2015; 9; 7(12): 1-10. DOI: 10.1101/cshperspect.a020677
31. Jimenez-Mateos EM, Henshall DC. Epilepsy and microRNA. Neuroscience. 2013; 238: 218-222. DOI: 10.1016/j.neuroscience.2013.02.027
32. Kapur J. Role of Neuronal Loss in the Pathogenesis of Recurrent Spontaneous Seizures. Epilepsy Curr. 2003; 3(5): 166-167. DOI: 10.1046/j.1535-7597.2003.03506.x
33. Kozomara A, Griffi ths-Jones S. miRBase: annotating high confi dence microRNAs using deep sequencing data. Nucl Acid Res. 2014; 42: 68–73. DOI: 10.1093/nar/gkt1181
34. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843–854. DOI: 10.1016/0092-8674(93)90529-y
35. Li T, Kuang Y, Li B. The genetic variants in 3ʹ untranslated region of voltage-gated sodium channel alpha 1 subunit gene affect the mRNA-microRNA interactions and associate with epilepsy. BMC Genet. 2016; 17: 1-12. DOI: 10.1186/s12863-016-0417-y.
36. Loscher W, Klitgaard H, Twyman RE et al. New avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov. 2013; 12: 757–776. DOI: 10.1038/nrd4126
37. Ma Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr. Neuropharmacol. 2018; 16: 37–42. DOI: 10.2174/1570159X15666170703102410.
38. Hu K, Xie Y, Zhanget C et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012; 13: 1-11. DOI: 10.1186/1471-2202-13-115
39. Avansini SH, de Sousa Lima BP, Secolin R et al. MicroRNA hsa-miR-134 is a circulating biomarker for mesial temporal lobe epilepsy. PLoS One. 2017; 12: 1-10. DOI: 10.1371/journal.pone.0173060.46
40. Henshall DC, Hamer HM, Pasterkamp RJ et al. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016; 15:1368–1376. DOI: 10.1016/S1474-4422(16)30246-0
41. Roncon P, Soukupova M, Binaschi A et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy—comparison with human epileptic samples. Sci Rep. 2015; 5: 141-143. DOI: 10.1038/srep14143
42. Tan CL, Plotkin JL, Veno MT et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 2013; 342: 1254–1258. DOI: 10.1126/science.1244193
43. Iyer A, Zurolo E, Prabowo A et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One. 2012; 13: 1-13 DOI: 10.1371/journal.pone.0044789
44. Yang X, Tang X, Sun P et al. MicroRNA15a/16-1 Antagomir Ameliorates Ischemic Brain Injury in Experimental. Stroke. 2017; 48(7):1941-1947. DOI: 10.1161/STROKEAHA.117.017284
45. Chou CH, Chang N, Shrestha S et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucl Acid Res. 2016; 44: 239–247. DOI: 10.1093/nar/gkv1258
46. Xiao W, Wu Y, Wang J et al. Network and Pathway-Based Analysis of Single-Nucleotide Polymorphism of miRNA in Temporal Lobe Epilepsy. Mol Neurobiol. 2019; 56(10): 7022-7031. DOI: 10.1007/s12035-019-1584-4
47. Zamay TN, Zamay GS, Shnayder NA et al Nucleic acid aptamers for molecular therapy of epilepcy and blood-brain barrier damages. Molecular Therapy - Nucleic Acids. 2019; 19(6): 1-22. DOI: 10.1016/j.omtn.2019.10.042
48. Pitkänen A, Ekolle Ndode-Ekane X, Lapinlampi N et al. Epilepsy biomarkers - Toward etiology and pathology specificity. Neurobiol Dis. 2019; 123: 42-58. DOI: 10.1016/j.nbd.2018.05.007
49. Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011; 10:173–186. DOI: 10.1016/S1474-4422(10)70310-0
50. Reschke CR, Henshal DC. microRNA and Epilepsy. In Santulli G. ed. microRNA: Medical Evidence. From Molecular Biology to Clinical Practice. Springer, Cham, 2015. DOI 10.1007/978-3-319-22671-2
51. Ruberti F, Barbato C, Cogoni C. Targeting microRNAs in Neurons: Tools and Perspectives. Exp Neurol. 2012; 235(2): 419-426. DOI: 10.1016/j.expneurol.2011.10.031
52. Jimenez-Mateos EM, Engel T, Merino-Serrais P et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med. 2012; 18: 1087–1094. DOI: 10.1038/nm.2834
53. Sørensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia - an exploratory study. Transl Neurodegener. 2016; 15; 1-12. DOI: 10.1186/s40035-016-0053-5
54. Johnson MR, Behmoaras J, Bottolo L et al. Systems genetics identifi es Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun. 2015; 6: 1-11. DOI: 10.1038/ncomms7031
55. Baulac M, De Boer H, Elger C at el. The Written Declaration on Epilepsy: an important achievement for Europe and beyond. Seizure. 2012; 21: 75-76. DOI: 10.1016/j.seizure.2011.11.001
56. Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application. Dev Dyn. 2018; 247(1):94-110. DOI: 10.1002/dvdy.24582
57. Wang J, Tai JY, Tan L. Genome-wide Circulating microRNA Expression Profiling Indicates Biomarkers for Epilepsy. Sci Rep. 2015; 5: 1-9. DOI: 10.1038/srep09522
58. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75:855–862. DOI: 10.1016/0092-8674(93)90530-4
59. Younus I, Reddy DS. Epigenetic Interventions for Epileptogenesis: A New Frontier for Curing Epilepsy. Pharmacol Ther. 2017; 177:108-122. DOI: 10.1016/j.pharmthera..03.002
60. Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry. 2014; 19: 848–852. DOI: 10.1038/mp.2013.93
Рецензия
Для цитирования:
Сапронова М.Р., Яковлева К.Д., Усольцева А.А., Панина Ю.С., Дмитренко Д.В., Зобова С.Н. Биомаркеры эпилепсии: микроРНК. Якутский медицинский журнал. 2020;(4):106-111. https://doi.org/10.25789/YMJ.2020.72.26
For citation:
Sapronova M.R., Yarovleva K.D., Usoltseva A.A., Panina J.S., Dmitrienko D.V., Zobova S.N. Biomarkers of epilepsy: microRNA. Yakut Medical Journal. 2020;(4):106-111. https://doi.org/10.25789/YMJ.2020.72.26