Biomarkers of epilepsy: microRNA
https://doi.org/10.25789/YMJ.2020.72.26
Abstract
This article considers the use of microRNAs as a possible biomarker of epilepsy.
The presented studies have shown that microRNAs can be involved in the process of epileptogenesis by regulating the inflammatory response, apoptosis of neurons, and transcription factors involved in cell differentiation. Biological fluids (blood and CSF) of patients with epilepsy showed differences in the number of circulating microRNAs, which may allow further use of microRNAs as a diagnostic biomarker. Recent discoveries providethe sufficient source of new microRNA targets, but there are still significant problems of studying their role in pathogenesis and the possibility of their application in clinical practice.
About the Authors
M. R. SapronovaRussian Federation
Sapronova Margarita Rafailevna – Ph.D., associate Professor, Department of medical genetics and clinical neurophysiology
Krasnoyarsk
K. D. Yarovleva
Russian Federation
Yarovleva Kristina Dmitrievna – postgraduate student, laboratory assistant, Department of medical genetics and clinical neurophysiology
Krasnoyarsk
A. A. Usoltseva
Russian Federation
Usoltseva Anna Alexandrovna – the resident, laboratory assistant, Department of medical genetics and clinical neurophysiology
Krasnoyarsk
J. S. Panina
Russian Federation
Panina Julia Sergeevna – research scientist, Department of medical genetics and clinical neurophysiology of Institute of postgraduate education
Krasnoyarsk
D. V. Dmitrienko
Russian Federation
Dmitrienko Diana Viktorovna – MD, Ph. D., head of the Department of medical genetics and clinical neurophysiology
Krasnoyarsk
S. N. Zobova
Russian Federation
Zobova Svetlana Nikolaevna – Ph. D, research scientist, Department of medical genetics and clinical neurophysiology
Krasnoyarsk
References
1. Panina YuS, Dmitrenko DV, Shnaider NA et al. Association of the carriage of IL-1B rs1143634 and rs16944 polymorphisms and BDNF rs6265 polymorphism with temporal lobe epilepsy. Nevrologiya, Neiropsikhiatriya, Psikhosomatika. 2019; 11(2): 46-51. (In Russ.). DOI: 10.14412/2074-2711-2019-2-46-51
2. Yakovleva KD, Sapronova MR, Usoltseva AA et al. Biomarkers of epilepsy. Yakut Medical Journal 2019; 4(68): 99-102. (In Russ.).
3. Dmitrenko DV, Shnaider NA, Strotskaya IG et al. Mechanisms of valproate-induced teratogenesis. Nevrologiya, Neiropsikhiatriya, Psikhosomatika. 2017; 9(1): 89-96. (In Russ.). DOI: 10.14412/2074-2711-2017-1S-89-96.
4. Ruksha TG, Sergeeva EYu, Palkina NV et al. MicroRNAs as ultraviolet irradiation effects regulators in skin cells. Cell and Tissue Biology. 2016; 58(10): 733-742. (In Russ.).
5. Chandradoss SD, Schirle NT, Szczepaniak M et al. A dynamic search process underlies microRNA targeting. Cell. 2015; 162: 96–107. DOI: 10.1016 / j. cell.2015.06.032.
6. Kaalund SS, Veno MT, Bak M et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance. Epilepsia. 2014; 55: 2017–2745. DOI: 10.1111/epi.12839
7. Cui L, Tao H, Wang Y et al. A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure. 2015; 27: 60–65. DOI: 10.1016/j.seizure.2015.02.032
8. Panjwani N, Wilson MD, Addis L et al. A microRNA-328 binding site in PAX6 is associated with centrotemporal spikes of rolandic epilepsy. Ann Clin Trans Neurol. 2016; 3: 512–522. DOI: 10.1002/acn3.320
9. Pitkanen A, Loscher W, Vezzani A et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016; 15:843–856. DOI: 10.1016/S1474-4422(16)00112-5
10. Manna I, Labate A, Borzi G et al. An SNP site in pri-miR-124, a brain expressed miRNA gene, no contribution to mesial temporal lobe epilepsy in an Italian sample. Neurol Sci 2016; 37: 1335–1339. DOI: 10.1007/s10072-016-2597-7
11. Balosso S, Maroso M, Sanchez-Alavez M et al. A Novel Non-Transcriptional Pathway Mediates the Proconvulsive Effects of interleukin1beta. Brain. 2008; 131(12):3256-3265. DOI: 10.1093/brain/awn271
12. Liu DZ, Tian Y, Ander BP et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010; 30: 92–101. DOI: 10.1038/jcbfm.2009.186
13. Bartel DP. Metazoan MicroRNAs. Cell. 2018; 173:20–51. DOI: 10.1016/j.cell.2018.03.006
14. Brennan GP, Henshall DC. MicroRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 2018; 667: 47–52. DOI: 10.1016/j.neulet.2017.01.017
15. Cava C, Manna I, Gambardella A. Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. Mol Ther Nucleic Acids. 2018; 13: 275-290. DOI: 10.1016/j.omtn.2018.09.008
16. Covanis A, Guekht A, Li S. From Global Campaign to Global Commitment: The World Health Assembly's Resolution on Epilepsy. Epilepsia. 2015; 56(11):1651-1657. DOI: 10.1111/epi.13192
17. Miller-Delaney SF, Bryan K, Das S et al. Differential DNA methylation profi les of coding and non-coding genes defi ne hippocampal sclerosis in human temporal lobe epilepsy. Brain. 2015; 138: 616–631. DOI: 10.1093/brain/awu373
18. Brennan GP, Dey D, Chen Y et al. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-de pendent gene networks. Cell Rep. 2016; 14: 2402–2412. DOI: 10.1016/j.celrep.2016.02.042
19. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012; 149: 515–524. DOI: 10.1016/j.cell.2012.04.005
20. Li C, Li S, Zhang F et al. Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE - / - Mice. Biochem. Biophys. Res. Commun. 2018; 495:1922–1929. DOI: 10.1016/j.bbrc.2017.11.195
21. Aronica E, Fluiter K, Iyer A et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010; 31: 1100–1107. DOI: 10.1111/j.1460-9568.2010.07122.x.
22. McKiernan CR, Jimenez-Mateos ME, Sano T et al. Expression Profiling the microRNA Response to Epileptic Preconditioning Identifies miR-184 as a Modulator of Seizure-Induced Neuronal Death. Exp Neurol. 2012; 237(2):346-354. DOI: 10.1016/j.expneurol.2012.06.029
23. Kan AA, van Erp S, Derijck AA et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci. 2012; 69: 3127–3145. DOI: 10.1007/s00018-012-0992-7
24. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014; 15: 509–524. DOI: 10.1038/nrm3838
25. Hegde M, Lowenstein DH. The search for circulating epilepsy biomarkers. BiomarkMed. 2014; 8: 413–427. DOI: 10.2217/bmm.13.142
26. Henshall DC. MicroRNA and epilepsy: Profiling, functions and potential clinical applications. Curr Opin Neurol. 2014; 2: 199-205. DOI: 10.1097/WCO.0000000000000079
27. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front. Mol. Neurosci. 2013; 6: 1-11. DOI: 10.3389/fnmol.2013.00037
28. Huang W, Li Z, Zhao L et al. Simvastatin Ameliorate Memory Deficits and Inflammation in Clinical and Mouse Model of Alzheimer's Disease via Modulating the Expression of miR-106b. Biomed Pharmacother. 2017; 92:46-57. DOI: 10.1016/j.biopha.2017.05.060
29. Sun J, Cheng W, Liu L et al. Identification of serum miRNAs differentially expressed in human epilepsy at seizure onset and post-seizure. Mol. Med. Rep. 2016; 14: 5318–5324. DOI:10.3892/mmr.2016.5906
30. Jessberger S, Parent MJ. Epilepsy and Adult Neurogenesis. Cold Spring Harb Perspect Biol. 2015; 9; 7(12): 1-10. DOI: 10.1101/cshperspect.a020677
31. Jimenez-Mateos EM, Henshall DC. Epilepsy and microRNA. Neuroscience. 2013; 238: 218-222. DOI: 10.1016/j.neuroscience.2013.02.027
32. Kapur J. Role of Neuronal Loss in the Pathogenesis of Recurrent Spontaneous Seizures. Epilepsy Curr. 2003; 3(5): 166-167. DOI: 10.1046/j.1535-7597.2003.03506.x
33. Kozomara A, Griffi ths-Jones S. miRBase: annotating high confi dence microRNAs using deep sequencing data. Nucl Acid Res. 2014; 42: 68–73. DOI: 10.1093/nar/gkt1181
34. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843–854. DOI: 10.1016/0092-8674(93)90529-y
35. Li T, Kuang Y, Li B. The genetic variants in 3ʹ untranslated region of voltage-gated sodium channel alpha 1 subunit gene affect the mRNA-microRNA interactions and associate with epilepsy. BMC Genet. 2016; 17: 1-12. DOI: 10.1186/s12863-016-0417-y.
36. Loscher W, Klitgaard H, Twyman RE et al. New avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov. 2013; 12: 757–776. DOI: 10.1038/nrd4126
37. Ma Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr. Neuropharmacol. 2018; 16: 37–42. DOI: 10.2174/1570159X15666170703102410.
38. Hu K, Xie Y, Zhanget C et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012; 13: 1-11. DOI: 10.1186/1471-2202-13-115
39. Avansini SH, de Sousa Lima BP, Secolin R et al. MicroRNA hsa-miR-134 is a circulating biomarker for mesial temporal lobe epilepsy. PLoS One. 2017; 12: 1-10. DOI: 10.1371/journal.pone.0173060.46
40. Henshall DC, Hamer HM, Pasterkamp RJ et al. MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol. 2016; 15:1368–1376. DOI: 10.1016/S1474-4422(16)30246-0
41. Roncon P, Soukupova M, Binaschi A et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy—comparison with human epileptic samples. Sci Rep. 2015; 5: 141-143. DOI: 10.1038/srep14143
42. Tan CL, Plotkin JL, Veno MT et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 2013; 342: 1254–1258. DOI: 10.1126/science.1244193
43. Iyer A, Zurolo E, Prabowo A et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One. 2012; 13: 1-13 DOI: 10.1371/journal.pone.0044789
44. Yang X, Tang X, Sun P et al. MicroRNA15a/16-1 Antagomir Ameliorates Ischemic Brain Injury in Experimental. Stroke. 2017; 48(7):1941-1947. DOI: 10.1161/STROKEAHA.117.017284
45. Chou CH, Chang N, Shrestha S et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucl Acid Res. 2016; 44: 239–247. DOI: 10.1093/nar/gkv1258
46. Xiao W, Wu Y, Wang J et al. Network and Pathway-Based Analysis of Single-Nucleotide Polymorphism of miRNA in Temporal Lobe Epilepsy. Mol Neurobiol. 2019; 56(10): 7022-7031. DOI: 10.1007/s12035-019-1584-4
47. Zamay TN, Zamay GS, Shnayder NA et al Nucleic acid aptamers for molecular therapy of epilepcy and blood-brain barrier damages. Molecular Therapy - Nucleic Acids. 2019; 19(6): 1-22. DOI: 10.1016/j.omtn.2019.10.042
48. Pitkänen A, Ekolle Ndode-Ekane X, Lapinlampi N et al. Epilepsy biomarkers - Toward etiology and pathology specificity. Neurobiol Dis. 2019; 123: 42-58. DOI: 10.1016/j.nbd.2018.05.007
49. Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011; 10:173–186. DOI: 10.1016/S1474-4422(10)70310-0
50. Reschke CR, Henshal DC. microRNA and Epilepsy. In Santulli G. ed. microRNA: Medical Evidence. From Molecular Biology to Clinical Practice. Springer, Cham, 2015. DOI 10.1007/978-3-319-22671-2
51. Ruberti F, Barbato C, Cogoni C. Targeting microRNAs in Neurons: Tools and Perspectives. Exp Neurol. 2012; 235(2): 419-426. DOI: 10.1016/j.expneurol.2011.10.031
52. Jimenez-Mateos EM, Engel T, Merino-Serrais P et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med. 2012; 18: 1087–1094. DOI: 10.1038/nm.2834
53. Sørensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia - an exploratory study. Transl Neurodegener. 2016; 15; 1-12. DOI: 10.1186/s40035-016-0053-5
54. Johnson MR, Behmoaras J, Bottolo L et al. Systems genetics identifi es Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun. 2015; 6: 1-11. DOI: 10.1038/ncomms7031
55. Baulac M, De Boer H, Elger C at el. The Written Declaration on Epilepsy: an important achievement for Europe and beyond. Seizure. 2012; 21: 75-76. DOI: 10.1016/j.seizure.2011.11.001
56. Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application. Dev Dyn. 2018; 247(1):94-110. DOI: 10.1002/dvdy.24582
57. Wang J, Tai JY, Tan L. Genome-wide Circulating microRNA Expression Profiling Indicates Biomarkers for Epilepsy. Sci Rep. 2015; 5: 1-9. DOI: 10.1038/srep09522
58. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75:855–862. DOI: 10.1016/0092-8674(93)90530-4
59. Younus I, Reddy DS. Epigenetic Interventions for Epileptogenesis: A New Frontier for Curing Epilepsy. Pharmacol Ther. 2017; 177:108-122. DOI: 10.1016/j.pharmthera..03.002
60. Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry. 2014; 19: 848–852. DOI: 10.1038/mp.2013.93
Review
For citations:
Sapronova M.R., Yarovleva K.D., Usoltseva A.A., Panina J.S., Dmitrienko D.V., Zobova S.N. Biomarkers of epilepsy: microRNA. Yakut Medical Journal. 2020;(4):106-111. https://doi.org/10.25789/YMJ.2020.72.26