Preview

Yakut Medical Journal

Advanced search

Browning markers in adult indigenous residents of Yakutia in conditions of natural cold

https://doi.org/10.25789/YMJ.2021.76.23

Abstract

In this work the expression profile in peripheral blood mononuclear cells of markers of brown adipose tissue activity (CIDEA, PRDM 16), markers of browning of white adipocytes (HOXC9, Slc27A1) and the marker of β-oxidation of fatty acids (Cpt1a) was analyzed in 150 indigenous residents of Yakutia, miners of a diamond mining company, who were exposed to natural cold for 3 months. To determine the metabolic status, anthropometric data, glucose level and blood lipid profile of were evaluated.

About the Authors

A. V. Efremova
Yakutsk Science Centre of Complex medical problems
Russian Federation

Efremova Agrafena Vladimirovna – Candidate of Biological Sciences, senior researcher



V. A. Alekseev
Yakutsk Science Centre of Complex medical problems
Russian Federation

Alekseev Vladislav Amirovich – junior researcher



A. A. Grigorieva
Yakutsk Science Centre of Complex medical problems
Russian Federation

Grigorieva Anastasia Anatolyevna – junior researcher



S. Cinti
Polytechnic University del Marche
Italy

Cinti Saverio, MD, Prof., Director of the Center for Obesity Study



References

1. Armamento-Villareal, R.; Wingkun, N.; Aguirre, L.E.; Kulkarny, V.; Napoli, N.; Colleluori, G.; Qualls, C.; Villareal, D.T. The FTO gene is associated with a paradoxically favorable cardiometabolic risk profile in frail, obese older adults. Pharm. Genom. 2016; 26: 154–160. [CrossRef]

2. Bachman, E.S.; Dhillon, H.; Zhang, C.Y.; Cinti, S.; Bianco, A.C.; Kobilka, B.K.; Lowell, B.B. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002; 297: 843–845. [CrossRef]

3. Barbatelli, G.; Murano, I.; Madsen, L.; Hao, Q.; Jumenez, M.; Kristiansen, K.; Giacobino, J.P.; De Matteis, R.; Cinti, S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 2010; 298: E1244– E1253. [CrossRef]

4. Barneda, D.; Planas-Iglesias, J.; Gaspar, M.L.; Mohammadyani, D.; Prasannan, S.; Dormann, D.; Han, G.S.; Jesch, S.A.; Carman, G.M.; Kagan, V.; et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife 2015; 4, e07485. [CrossRef] [PubMed]

5. Bartelt, A.; Bruns, O.T.; Reimer, R.; Hohenberg, H.; Ittrich, H.; Peldschus, K.; Kaul, M.G.; Tromsdorf, U.I.; Weller, H.; Waurisch, C.; et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011; 17: 200–205. [CrossRef]

6. Berbee, J.F.; Boon, M.R.; Khedoe, P.P.; Bartelt, A.; Schlein, C.; Worthmann, A.; Kooijman, S.; Hoeke, G.; Mol, I.M.; John, C.; et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun. 2015; 6: 6356. [CrossRef]

7. Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004; 84: 277–359. [CrossRef] [PubMed]

8. Cinti, S.; Graciotti, L.; Giordano, A.; Valerio, A.; Nisoli, E. COVID-19 and fat embolism: A hypothesis to explain the severe clinical outcome in people with obesity. Int. J. Obes. 2020. [CrossRef] [PubMed]

9. Cinti, S. Anatomy and physiology of the nutritional system. Mol. Asp. Med. 2019; 68: 101–107. [CrossRef] [PubMed]

10. Chondronikola, M.; Volpi, E.; Borsheim, E.; Porter, C.; Annamalai, P.; Enerback, S.; Lidell, M.E.; Saraf, M.K.; Labbe, S.M.; Hurren, N.M.; et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014; 63: 4089–4099. [CrossRef] [PubMed]

11. Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.H.; Doria, A.; et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009; 360: 1509–1517. [CrossRef] [PubMed]

12. Efremova, A.; Senzacqua, M.; Venema, W.; Isakov, E.; Di Vincenzo, A.; Zingaretti, M.C.; Protasoni, M.; Thomski, M.; Giordano, A.; Cinti, S. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes. J. Physiol. Biochem. 2019. [CrossRef]

13. Giordano, A.; Nisoli, E. Neuroendocrinology of Energy Balance. In Obesity. Pathogenesis, Diagnosis and Treatment; Endocrinology, 5; Sbraccia, P., Finer, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018.

14. Giordano, A.; Frontini, A.; Cinti, S. Convertible visceral fat as a therapeutic target to curb obesity. Nat. Rev. Drug Discov. 2016; 15: 405–424. [CrossRef]

15. Goody, D.; Pfeifer, A. MicroRNAs in brown and beige fat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019; 1864: 29–36. [CrossRef] [PubMed]

16. Ikewuchi, C.J.; Ikewuchi, C.C. Alteration of Plasma Lipid Profiles and Atherogenic Indices by Stachytarpheta jamaicensis L. (Vahl). Biochemistry 2009, 21. [CrossRef]

17. Inagaki, T.; Sakai, J.; Kajimura, S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 2017; 18: 527. [CrossRef] [PubMed]

18. Jung, S.M.; Sanchez-Gurmaches, J.; Guertin, D.A. Brown Adipose Tissue Development and Metabolism. In Brown Adipose Tissue, 1st ed.; Handbook of Experimental Pharmacology, 251; Pfeifer, A., Klingenspor, M., Herzig, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; 4–23.

19. Nedergaard, J.; Cannon, B. The changed metabolic world with human brown adipose tissue: Therapeutic visions. Cell Metab. 2010; 11: 268–272. [CrossRef] [PubMed]

20. Madsen, L.; Myrmel, L.S.; Fjaere, E.; Oyen, J.; Kristiansen, K. Dietary Proteins, Brown Fat, and Adiposity. Front. Physiol. 2018; 9: 1792. [CrossRef]

21. Wang, Q.A.; Tao, C.; Gupta, R.K.; Scherer, P.E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013; 19: 1338–1344. [CrossRef]

22. Madaniyazi, L.; Guo, Y.; Williams, G.; Jaakkola, J.J.K.; Wu, S.; Li, S. The nonlinear association between outdoor temperature and cholesterol levels, with modifying effect of individual characteristics and behaviors. Int. J. Biometeorol. 2020; 64: 367–375. [CrossRef] [PubMed]

23. Puri, V.; Ranjit, S.; Konda, S.; Nicoloro, S.M.; Straubhaar, J.; Chawla, A.; Chouinard, M.; Lin, C.; Burkart, A.; Corvera, S.; et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl. Acad. Sci. USA 2008; 105: 7833–7838. [CrossRef] [PubMed]

24. Reynes, B.; Garcia-Ruiz, E.; Oliver, P.; Palou, A. Gene expression of peripheral blood mononuclear cells is affected by cold exposure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015; 309: R824–R834. [CrossRef] [PubMed]

25. Rosenwald, M.; Perdikari, A.; Rulicke, T.; Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 2013; 15: 659–667. [CrossRef]

26. Shinoda, K.; Luijten, I.H.; Hasegawa, Y.; Hong, H.; Sonne, S.B.; Kim, M.; Xue, R.; Chondronikola, M.; Cypess, A.M.; Tseng, Y.H.; et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 2015; 21: 389–394.[CrossRef]

27. Slayton, M.; Gupta, A.; Balakrishnan, B.; Puri, V. CIDE Proteins in Human Health and Disease. Cells 2019; 8: 238. [CrossRef]

28. Shimizu, T.; Yokotani, K. Acute cold exposure-induced down-regulation of CIDEA, cell death-inducing DNA fragmentation factor-alpha-like effector A, in rat interscapular brown adipose tissue by sympathetically activated beta3-adrenoreceptors. Biochem. Biophys. Res. Commun. 2009; 387: 294–299. [CrossRef]

29. Yoneshiro, T.; Aita, S.; Matsushita, M.; Kayahara, T.; Kameya, T.; Kawai, Y.; Iwanaga, T.; Saito, M. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Investig. 2013; 123: 3404–3408. [CrossRef] [PubMed]

30. Van Marken Lichtenbelt, W.D.; Vanhommerig, J.W.; Smulders, N.M.; Drossaerts, J.M.; Kemerink, G.J.; Bouvy, N.D.; Schrauwen, P.; Teule, G.J. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009; 360: 1500–1508. [CrossRef] [PubMed]

31. Villarroya, F.; Cereijo, R.; Villarroya, J.; Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 2017; 13: 26–35. [CrossRef] [PubMed]

32. Walden, T.B.; Hansen, I.R.; Timmons, J.A.; Cannon, B.; Nedergaard, J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 2012; 302: E19–E31. [CrossRef] [PubMed]

33. Wang, W.; Ishibashi, J.; Trefely, S.; Shao, M.; Cowan, A.J.; Sakers, A.; Lim, H.W.; O’Connor, S.; Doan, M.T.; Cohen, P.; et al. A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metab. 2019; 30: 174–189. [CrossRef] [PubMed]

34. Zingaretti, M.C.; Crosta, F.; Vitali, A.; Guerrieri, M.; Frontini, A.; Cannon, B.; Nedergaard, J.; Cinti, S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009; 23: 3113–3120. [CrossRef] [PubMed]


Review

For citations:


Efremova A.V., Alekseev V.A., Grigorieva A.A., Cinti S. Browning markers in adult indigenous residents of Yakutia in conditions of natural cold. Yakut Medical Journal. 2021;(4):97-103. https://doi.org/10.25789/YMJ.2021.76.23

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)