Preview

Якутский медицинский журнал

Расширенный поиск

Маркеры браунинга у взрослых коренных жителей Якутии в условиях естественного холода

https://doi.org/10.25789/YMJ.2021.76.23

Аннотация

В данной работе проведен анализ профиля экспрессии в мононуклеарных клетках периферической крови маркеров активности бурой жировой ткани (CIDEA, PRDM 16), маркеров браунинга белых адипоцитов (HOXC9, Slc27A1) и маркера β-окисления жирных кислот (Cpt1a) у коренных жителей Якутии, проходчиков алмазодобывающий компании, которые в течение 3 мес. находились в условиях естественного холода. Для определения метаболического статуса были оценены антропометрические данные, уровень глюкозы и липидный профиль крови исследуемых.

Об авторах

А. В. Ефремова
Якутский НЦ комплексных медицинских проблем
Россия

Ефремова Аграфена Владимировна – к.б.н., с.н.с.



В. А. Алексеев
Якутский НЦ комплексных медицинских проблем
Россия

Алексеев Владислав Амирович – м.н.с.



А. А. Григорьева
Якутский НЦ комплексных медицинских проблем
Россия

Григорьева Анастасия Анатольевна – м.н.с.



С. Чинти
Политехнический университет дель Марке
Италия

Чинти Саверио – MD, проф., директор Центра по изучению ожирения



Список литературы

1. Armamento-Villareal, R.; Wingkun, N.; Aguirre, L.E.; Kulkarny, V.; Napoli, N.; Colleluori, G.; Qualls, C.; Villareal, D.T. The FTO gene is associated with a paradoxically favorable cardiometabolic risk profile in frail, obese older adults. Pharm. Genom. 2016; 26: 154–160. [CrossRef]

2. Bachman, E.S.; Dhillon, H.; Zhang, C.Y.; Cinti, S.; Bianco, A.C.; Kobilka, B.K.; Lowell, B.B. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002; 297: 843–845. [CrossRef]

3. Barbatelli, G.; Murano, I.; Madsen, L.; Hao, Q.; Jumenez, M.; Kristiansen, K.; Giacobino, J.P.; De Matteis, R.; Cinti, S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 2010; 298: E1244– E1253. [CrossRef]

4. Barneda, D.; Planas-Iglesias, J.; Gaspar, M.L.; Mohammadyani, D.; Prasannan, S.; Dormann, D.; Han, G.S.; Jesch, S.A.; Carman, G.M.; Kagan, V.; et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife 2015; 4, e07485. [CrossRef] [PubMed]

5. Bartelt, A.; Bruns, O.T.; Reimer, R.; Hohenberg, H.; Ittrich, H.; Peldschus, K.; Kaul, M.G.; Tromsdorf, U.I.; Weller, H.; Waurisch, C.; et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011; 17: 200–205. [CrossRef]

6. Berbee, J.F.; Boon, M.R.; Khedoe, P.P.; Bartelt, A.; Schlein, C.; Worthmann, A.; Kooijman, S.; Hoeke, G.; Mol, I.M.; John, C.; et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun. 2015; 6: 6356. [CrossRef]

7. Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004; 84: 277–359. [CrossRef] [PubMed]

8. Cinti, S.; Graciotti, L.; Giordano, A.; Valerio, A.; Nisoli, E. COVID-19 and fat embolism: A hypothesis to explain the severe clinical outcome in people with obesity. Int. J. Obes. 2020. [CrossRef] [PubMed]

9. Cinti, S. Anatomy and physiology of the nutritional system. Mol. Asp. Med. 2019; 68: 101–107. [CrossRef] [PubMed]

10. Chondronikola, M.; Volpi, E.; Borsheim, E.; Porter, C.; Annamalai, P.; Enerback, S.; Lidell, M.E.; Saraf, M.K.; Labbe, S.M.; Hurren, N.M.; et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014; 63: 4089–4099. [CrossRef] [PubMed]

11. Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.H.; Doria, A.; et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009; 360: 1509–1517. [CrossRef] [PubMed]

12. Efremova, A.; Senzacqua, M.; Venema, W.; Isakov, E.; Di Vincenzo, A.; Zingaretti, M.C.; Protasoni, M.; Thomski, M.; Giordano, A.; Cinti, S. A large proportion of mediastinal and perirenal visceral fat of Siberian adult people is formed by UCP1 immunoreactive multilocular and paucilocular adipocytes. J. Physiol. Biochem. 2019. [CrossRef]

13. Giordano, A.; Nisoli, E. Neuroendocrinology of Energy Balance. In Obesity. Pathogenesis, Diagnosis and Treatment; Endocrinology, 5; Sbraccia, P., Finer, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018.

14. Giordano, A.; Frontini, A.; Cinti, S. Convertible visceral fat as a therapeutic target to curb obesity. Nat. Rev. Drug Discov. 2016; 15: 405–424. [CrossRef]

15. Goody, D.; Pfeifer, A. MicroRNAs in brown and beige fat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019; 1864: 29–36. [CrossRef] [PubMed]

16. Ikewuchi, C.J.; Ikewuchi, C.C. Alteration of Plasma Lipid Profiles and Atherogenic Indices by Stachytarpheta jamaicensis L. (Vahl). Biochemistry 2009, 21. [CrossRef]

17. Inagaki, T.; Sakai, J.; Kajimura, S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat. Rev. Mol. Cell Biol. 2017; 18: 527. [CrossRef] [PubMed]

18. Jung, S.M.; Sanchez-Gurmaches, J.; Guertin, D.A. Brown Adipose Tissue Development and Metabolism. In Brown Adipose Tissue, 1st ed.; Handbook of Experimental Pharmacology, 251; Pfeifer, A., Klingenspor, M., Herzig, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; 4–23.

19. Nedergaard, J.; Cannon, B. The changed metabolic world with human brown adipose tissue: Therapeutic visions. Cell Metab. 2010; 11: 268–272. [CrossRef] [PubMed]

20. Madsen, L.; Myrmel, L.S.; Fjaere, E.; Oyen, J.; Kristiansen, K. Dietary Proteins, Brown Fat, and Adiposity. Front. Physiol. 2018; 9: 1792. [CrossRef]

21. Wang, Q.A.; Tao, C.; Gupta, R.K.; Scherer, P.E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013; 19: 1338–1344. [CrossRef]

22. Madaniyazi, L.; Guo, Y.; Williams, G.; Jaakkola, J.J.K.; Wu, S.; Li, S. The nonlinear association between outdoor temperature and cholesterol levels, with modifying effect of individual characteristics and behaviors. Int. J. Biometeorol. 2020; 64: 367–375. [CrossRef] [PubMed]

23. Puri, V.; Ranjit, S.; Konda, S.; Nicoloro, S.M.; Straubhaar, J.; Chawla, A.; Chouinard, M.; Lin, C.; Burkart, A.; Corvera, S.; et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl. Acad. Sci. USA 2008; 105: 7833–7838. [CrossRef] [PubMed]

24. Reynes, B.; Garcia-Ruiz, E.; Oliver, P.; Palou, A. Gene expression of peripheral blood mononuclear cells is affected by cold exposure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015; 309: R824–R834. [CrossRef] [PubMed]

25. Rosenwald, M.; Perdikari, A.; Rulicke, T.; Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 2013; 15: 659–667. [CrossRef]

26. Shinoda, K.; Luijten, I.H.; Hasegawa, Y.; Hong, H.; Sonne, S.B.; Kim, M.; Xue, R.; Chondronikola, M.; Cypess, A.M.; Tseng, Y.H.; et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 2015; 21: 389–394.[CrossRef]

27. Slayton, M.; Gupta, A.; Balakrishnan, B.; Puri, V. CIDE Proteins in Human Health and Disease. Cells 2019; 8: 238. [CrossRef]

28. Shimizu, T.; Yokotani, K. Acute cold exposure-induced down-regulation of CIDEA, cell death-inducing DNA fragmentation factor-alpha-like effector A, in rat interscapular brown adipose tissue by sympathetically activated beta3-adrenoreceptors. Biochem. Biophys. Res. Commun. 2009; 387: 294–299. [CrossRef]

29. Yoneshiro, T.; Aita, S.; Matsushita, M.; Kayahara, T.; Kameya, T.; Kawai, Y.; Iwanaga, T.; Saito, M. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Investig. 2013; 123: 3404–3408. [CrossRef] [PubMed]

30. Van Marken Lichtenbelt, W.D.; Vanhommerig, J.W.; Smulders, N.M.; Drossaerts, J.M.; Kemerink, G.J.; Bouvy, N.D.; Schrauwen, P.; Teule, G.J. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009; 360: 1500–1508. [CrossRef] [PubMed]

31. Villarroya, F.; Cereijo, R.; Villarroya, J.; Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 2017; 13: 26–35. [CrossRef] [PubMed]

32. Walden, T.B.; Hansen, I.R.; Timmons, J.A.; Cannon, B.; Nedergaard, J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 2012; 302: E19–E31. [CrossRef] [PubMed]

33. Wang, W.; Ishibashi, J.; Trefely, S.; Shao, M.; Cowan, A.J.; Sakers, A.; Lim, H.W.; O’Connor, S.; Doan, M.T.; Cohen, P.; et al. A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metab. 2019; 30: 174–189. [CrossRef] [PubMed]

34. Zingaretti, M.C.; Crosta, F.; Vitali, A.; Guerrieri, M.; Frontini, A.; Cannon, B.; Nedergaard, J.; Cinti, S. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009; 23: 3113–3120. [CrossRef] [PubMed]


Рецензия

Для цитирования:


Ефремова А.В., Алексеев В.А., Григорьева А.А., Чинти С. Маркеры браунинга у взрослых коренных жителей Якутии в условиях естественного холода. Якутский медицинский журнал. 2021;(4):97-103. https://doi.org/10.25789/YMJ.2021.76.23

For citation:


Efremova A.V., Alekseev V.A., Grigorieva A.A., Cinti S. Browning markers in adult indigenous residents of Yakutia in conditions of natural cold. Yakut Medical Journal. 2021;(4):97-103. https://doi.org/10.25789/YMJ.2021.76.23

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)