Preview

Якутский медицинский журнал

Расширенный поиск

Терапевтические подходы к восстановлению антиатерогенной функции липопротеинов высокой плотности

https://doi.org/10.25789/YMJ.2021.75.25

Аннотация

Антиатерогенная функция липопротеинов высокой плотности (ЛПВП) связана с их участием в обратном транспорте избытка холестерина из периферических тканей в печень. Исследованиями последних лет показано, что антиатерогенная функция ЛПВП при различных патологических состояниях может изменяться, что приводит к появлению дисфункциональных ЛПВП, неспособных выполнять в организме защитные функции. Настоящий обзор посвящён анализу современных подходов, направленных как на повышение уровня ЛПВП в плазме крови, так и на сохранение и восстановление их функциональных свойств.

Об авторах

О. Н. Потеряева
НИИ биохимии ФИЦ фундаментальной и трансляционной медицины
Россия

Потеряева Ольга Николаевна – д.м.н., в.н.с.



И. Ф. Усынин
НИИ биохимии ФИЦ фундаментальной и трансляционной медицины
Россия

Усынин Иван Фёдорович – д.б.н., зав. лаб.



Список литературы

1. 2019 Рекомендации ESC/EAS по лечению дислипидемий: модификация липидов для снижения сердечно-сосудистого риска. Российский кардиологический журнал. 2020; 25(5): 3826. DOI: 10.15829/1560-4071-2020-3826

2. Adams V, Besler C, Fischer T, Riwanto M, et al. Exercise training in patients with chronic heart failure promotes restoration of high-density lipoprotein functional properties. Circ Res. 2013; 113(12): 1345–55. DOI: 10.1161/CIRCRESAHA.113.301684

3. Aminian A, Zajichek A, Arterburn DE et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. JAMA. 2019; 322: 1271–82. DOI: 10.1001/jama.2019.14231

4. Bailey D, Jahagirdar R, Gordon A, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. JACC. 2010; 55: 2580-2589. DOI: 10.1016/j.jacc.2010.02.035

5. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. NEJM. 2007; 357(21): 2109-2122. DOI: 10.1056/NEJMoa0706628

6. Barter PJ, Rye KA. Targeting High-density Lipoproteins to Reduce Cardiovascular Risk: What Is the Evidence? Clin Ther. 2015; 37: 2716-2731. DOI: 10.1016/j.clinthera.2015.07.021

7. Bougarne N, Weyers B, Desmet SJ., Deckers J, Ray DW, Staels B, De Bosscher K. Molecular actions of PPARalpha in lipid metabolism and inflammation. Endocr Rev. 2018; 39(5): 760-802. DOI: 10.1210/er.2018-00064.PMID: 30020428

8. Brites F, Martin M, Guillas I, Kontush A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clinical. 2017; 8: 66–77. DOI:10.1016/j.bbacli.2017.07.002

9. Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. Atherosclerosis. 2010; (2): 353-61. DOI: 10.1016/j.atherosclerosis.2009.12.023

10. Butcher LR, Thomas A, Backx K, Roberts A, Webb R, Morris K. Low- intensity exercise exerts beneficial effects on plasma lipids via PPARgamma. Med Sci Sports Exerc. 2008; 40: 1263–1270. DOI: 10.1249/MSS.0b013e31816c091d

11. Canner PL, Furberg CD, McGovern ME. Benefits of Niacin in Patients With Versus Without the Metabolic Syndrome and Healed Myocardial Infarction (from the Coronary Drug Project). AM J Cardiol. 2006. 97(4), 477–479. DOI: 10.1016/j.amjcard.2005.08.070

12. Casella-Filho A, Chagas AC, Maranhão RC, et al. Effect of exercise training on plasma levels and functional properties of high-density lipoproteincholesterol in the metabolic syndrome. Am J Cardiol. 2011; 107(8): 1168–1172. DOI: 10.1016/j.amjcard.2010.12.014

13. Chen W, Wu Y, Lu Q, Wang S, Xing D. Endogenous ApoA-I expression in macrophages: a potential target for protection against atherosclerosis. Clin Chim Acta. 2020; 505: 55-59. DOI: 10.1016/j.cca.2020.02.025

14. DeGoma EM, Rader DJ. Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol. 2011; 8(5): 266-277. DOI: 10.1038/nrcardio.2010.200

15. Dunbar RL, Movva R, Bloedon LT, et al. Oral apolipoprotein A-I mimetic D-4F lowers HDL-inflammatory index in high-risk patients: a first-in-human multiple-dose, randomized controlled trial. Clin Transl Sci. 2017; 10: 455–469. DOI: 10.1111/cts.12487

16. Gebhard C, Rheaume E, Berry C, et al. Beneficial effects of reconstituted high-density lipoprotein (rHDL) on circulating CD34+ cells in patients after an acute coronary syndrome. PLOS ONE. 2017; 12(1): e0168448. DOI: 10.1371/journal.pone.0168448

17. Ghanbari-Niaki A, Ghanbari-Abarghooi S, Rahbarizadeh F, Zare-Kookandeh N, Gholizadeh M, Roudbari F, Zare-Kookandeh A. Heart ABCA1 and PPAR-α genes expression responses in male rats: effects of high intensity treadmill running training and aqueous extraction of black crataegus-pentaegyna. Res Cardiovasc Med. 2013; 2(4): 153–159. DOI: 10.5812/cardiovascmed.13892

18. Gille A, D’Andrea D, Tortorici MA, Hartel G, Wright SD. CSL112 (apolipoprotein A-I [human]) enhances cholesterol efflux similarly in healthy individuals and stable atherosclerotic disease patients highlights. Arterioscler Thromb Vasc Biol. 2018; 38(4): 953–963. DOI:10.1161/atvbaha.118.310538

19. Gordon SM, Amar MJ, Jeiran K, Stagliano M, Staller E, Playford MP, Mehta NN, Vaisar T, Remaley AT. Effect of niacin monotherapy on high density lipoprotein composition and function. Lipids Health Dis. 2020; 19(1):190. DOI: 10.1186/s12944-020-01350-3

20. Hernaez A, Castaner O, Elosua R, Pinto X, Estruch R, Salas-Salvado J, Corella D, Arós F, Serra-Majem L, Fiol M, Ortega-Calvo M, Ros E, Martínez-González MA, de la Torre R, López-Sabater MC, Fitó M. Mediterranean diet improves high-density lipoprotein function in high-cardiovascular-risk individuals: a randomized controlled trial. Circulation. 2017; 135(7): 633-643. DOI: 10.1161/CIRCULATIONAHA.116.023712

21. Hoang A, Tefft C, Duffy SJ, Formosa M, Henstridge DC, Kingwell BA. et al. ABCA1 expression in humans is associated with physical activity and alcohol consumption. Atherosclerosis. 2008; 197: 197–203. DOI: 10.1016/j.atherosclerosis.2007.03.017

22. Hou L, Tang S, Wu BJ, Ong KL, Westerterp M, Barter PJ, Cochran BJ, Tabet F, Rye KA. Apolipoprotein A-I improves pancreatic β-cell function independent of the ATP-binding cassette transporters ABCA1 and ABCG1. FASEB J. 2019; 33(7): 8479-8489. DOI: 10.1096/fj.201802512RR.

23. Hovingh GK, Smits LP, Stefanutti C, et al. The effect of an apolipoprotein A-I-containing high-density lipoproteinmimetic particle (CER001) on carotid artery wall thickness in patients with homozygous familial hypercholesterolemia: the modifying orphan disease evaluation (MODE) study. Am Heart J. 2015; 169: 736-742.e1. DOI: 10.1016/j.ahj.2015.01.008

24. Jomard A, Osto E. High density lipoprotein: metabolism, function, and therapeutic potential. Front Cardiovasc Med. 2020; 7(39): 1-12. DOI: 10.3389/fcvm.2020.00039

25. Kataoka Y, Andrews J, Duong M, et al. Regression of coronary atherosclerosis with infusions of the high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden. Cardiovasc Diagn Ther. 2017; 7: 252-63. DOI: 10.21037/cdt.2017.02.01

26. Kootte RS, Smits LP, van der Valk FM, et al. Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA. J Lipid Res. 2015; 56: 703-712. DOI: 10.1194/jlr.M055665

27. Lincoff AM, Nicholls SJ, Riesmeyer JS, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. NEJM. 2017; 376(20): 1933–1942. DOI: 10.1056/NEJMoa1609581

28. Liu D, Ding Z, Wu M, Xu W, et al. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 path way. JMCC. 2017; 105: 77-88. DOI:10.1016/j.yjmcc.2017.01.017

29. Marques LR, Diniz TA, Antunes BM, Rossi FE, Caperuto EC, Lira FS, Gonçalves DC. Reverse cholesterol transport: molecular mechanisms and the non-medical approach to enhance HDL cholesterol. Front Physiol. 2018; 9: 526. DOI: 10.3389/fphys.2018.00526

30. Masson W, Lobo M, Siniawski D, Huerin M, Molinero G, Valero R, Nogueiraet JP. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. Diabetes Metab. 2018; 44: 508-513. DOI: 10.1016/j.diabet.2018.02.005

31. Nicholls SJ, Andrews J, Kastelein JJP, et al. Effect of serial infusions of CER-001, a pre-β high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018; 3(9): 815-822. DOI: 10.1001/jamacardio.2018.2121

32. Nicholls SJ, Puri R, Wolski K, et al. Effect of the BET protein inhibitor, RVX-208, on progression of coronary atherosclerosis: results of the phase 2b, randomized, double-blind, multicenter, ASSURE trial. Am J Cardiovasc Drugs. 2016; 16(1), 55-65. DOI: 10.1007/s40256-015-0146-z

33. Ngo Sock SE, Chapados NA, Lavoie JM. LDL receptor and Pcsk9 transcripts are decreased in liver of ovariectomized rats: effects of exercise training. Horm Metab Res. 2014; 46: 550–555. DOI: 10.1055/s-0034-1370910

34. Nikolic D, Rizzo M, Mikhailidis DP, Wong NC, Banach M. An evaluation of RVX-208 for the treatment of atherosclerosis. Expert Opin Investig Drugs. 2015; 24(10): 1389–1398. DOI:10.1517/13543784.2015.1083010

35. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant apoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003; 290(17): 2292–2300. DOI: 10.1001/jama.290.17.2292

36. Osto E, Doytcheva P, Corteville C, Bueter M, Dorig C, Stivala S, et al. Rapid and body weight-independent improvement of endothelial and high-density lipoprotein function after Roux-en-Y gastric bypass: role of glucagon-like peptide. Circulation. 2015; 131(10): 871-881. DOI: 10.1161/CIRCULATIONAHA.114.011791

37. Parolini C, Adorni MP, Busnelli M, Manzini S, Cipollari E, Favari E, Lorenzon P, Ganzetti GS, Fingerle J, Bernini F, Chiesa G. Can infusions of large synthetic HDL containing trimeric apoA-I stabilize atherosclerotic plaques in hypercholesterolemic rabbits. J Cardiol. 2019; 35(10): 1400-1408. DOI: 10.1016/j.cjca.2019.05.033

38. Poteryaeva ON, Usynin IF. Antidiabetic role of high density lipoproteins. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2019; 13(2): 113-121. DOI: 10.1134/S1990750819020070

39. Riwanto M, Landmesser U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J. Lipid. Res. 2013; 54, 3227–3243. DOI: 10.1194/jlr.R037762

40. Rosenson RS, Brewer HB, Ansell BJ, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016; 13(1): 48–60. DOI: 10.1038/nrcardio.2015.124

41. Rye K-A, Barter PJ. Cardioprotective functions of HDLs. J Lipid Res. 2013; 55(2): 168-179. DOI: 10.1194/jlr.R039297

42. Schmiedtova M, Heczkova M, Kovar J, Kralova LI, Poledne R. Reverse transport of cholesterol is the reason for resistance to development of atherosclerosis in Prague hereditary hypercholesterolemic (PHHC) rat. Physiol Res. 2014; 63(5): 591-6.

43. Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. NEJM. 2012; 367: 2089-2099. DOI: 10.1056/NEJMoa1206797

44. Shaw JA, Bobik A, Murphy A, et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res. 2008; 103(10): 1084-1091. DOI: 10.1161/CIRCRESAHA.108.182063

45. Soran H, Schofield J D, Durrington P. N. Antioxidant properties of HDL. Front Pharmacol. 2015; 6: 222. DOI: 10.3389/fphar.2015.00222

46. Tabet F, Cuesta Torres LF, Ong KL, Shrestha S, Choteau SA, Barter PJ, Clifton P, Rye R-A. High-density lipoprotein-associated miR-223 is altered after diet-induced weight loss in overweight and obese males. PLoS ONE. 2016; 11(3): e0151061. DOI: 10.1371/journal.pone.0151061

47. Takata K, Di Bartolo BA, Nicholls SJ. High-density lipoprotein infusions. Cardiol Clin. 2018; 36(2): 311-315. DOI:10.1016/j.ccl.2017.12.012

48. Tall AR., Rader DJ. Trials and tribulations of CETP inhibitors. Circ Res. 2018; 122(1): 106–12. DOI: 10.1161/CIRCRESAHA.117.311978

49. Tardif JC, Ballantyne CM, Barter P, et al. Effects of the high density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J., 2014; 35(46), 3277-3286. DOI: 10.1093/eurheartj/ehu171

50. Tardy C, Goffinet M, Boubekeur N, et al. HDL and CER001 inverse-dose dependent inhibition of atherosclerotic plaque formation in apoE-/-mice: evidence of ABCA1 down-regulation. PLOS ONE. 2015; 10:e0137584. DOI: 10.1371/journal.pone.0137584

51. The HPS3/TIMI55–REVEAL Collaborative Group. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. NEJM. 2017; 377(13), 1217-1227. DOI: 10.1056/NEJMoa1706444

52. The HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014; 371(3): 203-212. DOI: 10.1056/NEJMoa1300955

53. Vaisberg M, Bachi AL, Latrilha C, Dioguardi GS, Bydlowski SP, Maranhão RC. Lipid transfer to HDL is higher in marathon runners than in sedentary subjects, but is acutely inhibited during the run. Lipids. 2012; 47: 679–686. DOI: 10.1007/s11745-012-3685-y

54. Xu W, Qian M, Huang C, et al. Comparison of mechanisms of endothelial cell protections between high-density lipoprotein and apolipoprotein A-I mimetic peptide. Front Pharmacol. 2019; 10: 817. DOI: 10.3389/fphar.2019.00817

55. Zhang S, Liu Y, Li Q. et al. Exercise improved rat metabolism by raising PPAR-α. Int J Sports Med. 2011; 32: 568–573. DOI: 10.1055/s0031-1271755

56. Zhao Q, Li J, Yang J, Li R. Association of total cholesterol and HDL-C levels and outcome in coronary heart disease patients with heart failure. Medicine (Baltimore). 2017; 96(9):e6094. DOI: 10.1097/MD.0000000000006094


Рецензия

Для цитирования:


Потеряева О.Н., Усынин И.Ф. Терапевтические подходы к восстановлению антиатерогенной функции липопротеинов высокой плотности. Якутский медицинский журнал. 2021;(3):98-103. https://doi.org/10.25789/YMJ.2021.75.25

For citation:


Poteryaeva O.N., Usynin I.F. Therapeutic approaches to restoring the antiatherogenic function of high density lipoproteins. Yakut Medical Journal. 2021;(3):98-103. https://doi.org/10.25789/YMJ.2021.75.25

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)