The functional role of the transferrin receptor - TfR1
https://doi.org/10.25789/YMJ.2021.75.24
Abstract
The article presents modern data on the functional role of the transferrin receptor - TfR1. The information on the significance of this receptor in the functioning of various cells of the body is generalized, and the diverse role of this receptor depending on the type of cells and the stage of their activation is shown.
About the Authors
V. P. PatrakeevaRussian Federation
Patrakeeva Veronika Pavlovna - PhD (Biol.), Head of the Department of Environmental Immunology
E. V. Kontievskaya
Russian Federation
Kontievskaya Elena Vladimirovna - junior researcher of the Department of Environmental Immunology
Arkhangelsk
References
1. A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells / Li X., Zhou Y., Wickramaratne B., et al // Biomedical microdevices. 2021. Vol. 23. Is. 2. Article number 28. DOI: 10.1007/s10544-021-00566-z/2021
2. An anti-transferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells / Ng P.P., Dela Cruz J.S., Sorour D.N., et al // Proc. Natl. Acad. Sci. U.S.A. 2002. Vol. 99. pp. 10706-10711. DOI: 10.1073/pnas.162362999.
3. Berthault C., Staels W., Scharfmann R. Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells // Molecular Metabolism. 2020. Vol. 42. Article 101060. DOI: 10.1016/j.molmet.2020.101060
4. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1 / Li L., Fang C.J., Ryan J.C., et al. // Proc Natl Acad Sci USA. 2010. Vol. 107. pp. 3505–3510. DOI: 10.1073/pnas.0913192107
5. CD71 + Erythroid Cells Exacerbate HIV-1 Susceptibility, Mediate trans-Infection, and Harbor Infective Viral Particles / Namdar A., Dunsmore G., Shahbaz S., et al // mBio. 2019. Vol. 10(6). Article number e02767-19. DOI:10.1128/mBio.02767-19.
6. CD71 + Erythroid Cells in Human Neonates Exhibit Immunosuppressive Properties and Compromise Immune Response Against Systemic Infection in Neonatal Mice / Elahi S., Vega-López M.A., Herman-Miguel V., et al // Front Immunol. 2020. Vol. 11. Article 597433. DOI: 10.3389/fimmu.2020.597433.eCollection 2020.
7. CD71 mesangial IgA1 receptor and the progression of IgA nephropathy / Jhee J.H., Nam B.Y., Park J.T., et al. // Translational Research. 2021. Vol. 230. pp. 34-43. DOI: 10.1016/j.trsl.2020.10.007
8. CD71(+) Erythroid Suppressor Cells Promote Fetomaternal Tolerance through Arginase-2 and PDL-1 /Delyea C., Bozorgmehr N., Koleva P., et al // Journal of immunology. 2018. Vol. 200. Is. 12. pp. 4044-4058. DOI: 10.4049/jimmunol.1800113
9. CD71+ erythroid cells from neonates born to women with preterm labor regulate cytokine and cellular responses / Miller D., Romero R., Unkel R. et al // J. Leukoc. Biol. 2018. Vol. 103. pp. 761-775. DOI: 10.1002/JLB.5A0717-291RRR
10. Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation / Lederman H.M., Cohen A., Lee J.W.W., et al // Blood. 1984. Vol. 64 (3). P. 748-753.
11. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human / Zhang W., Liu Q.Y., Haqqani A.S., et al // Fluids Barriers CNS. 2020. Vol. 17(1). Article number: 47. DOI: 10.1186/s12987-020-00209-0.
12. Downregulation of TfR1 promotes progression of colorectal cancer via the JAK/STAT pathway / Cui C., Cheng X., Yan L.et al // Cancer Manag Res. 2019. Vol. 11. pp. 6323-6341. DOI: 10.2147/CMAR.S198911
13. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition / Hangauer M.J., Viswanathan V.S., Ryan M.J., et al. // Nature. 2017. Vol. 551. pp. 247-250. DOI: 10.1038/nature24297
14. Elahi S. Neglected Cells: Immunomodulatory Roles of CD71+ Erythroid Cells // Trends in Immunology. 2019. Vol. 40, Is. 3. pp. 181-185. DOI.org/10.1016/j.it.2019.01.003
15. Elahi S., Ertelt J.M., Kinder J.M. et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection // Nature. 2013. Vol. 504. pp. 158-162. DOI: 10.1038/nature12675
16. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2 / Shahbaz S., Xu L., Osman M., et al // Stem Cell Reports. 2021. Vol. 16. Is. 5. pp. 1165-1181. DOI: 10.1016/j.stemcr.2021.04.001
17. Erythroid Suppressor Cells Compromise Neonatal Immune Response against Bordetella pertussis / Dunsmore G., Bozorgmehr N., Delyea C., et al // Journal of immunology. 2017. Vol. 199. Is. 6. pp. 2081-2095. DOI: 10.4049/jimmunol.1700742
18. Erythropoiesis and transferrin receptors / Moura I.C., Hermine O., Lacombe C., et alPatrick Mayeux // Curr Opin Hematol. 2015. Vol. 22(3). pp. 193-198. DOI: 10.1097/MOH.0000000000000133.
19. Expression of CD71 on cell proliferation in hematologic malignancy and its correlation with Ki-67 / Wei Y.Y., Zhang X.Z., Zhang F., et al // Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015. Vol. 23. pp. 234–240. DOI: 10.7534/j.issn.1009-2137.2015.01.044
20. Ferroptosis: A Regulated Cell Death / Stockwell B.R., Angeli F. J.P., Bayir H., et al // Metabolism, Redox Biology, and Disease Cell. 2017. Vol. 171. pp. 273-285. DOI:10.1016/j.cell.2017.09.021
21. Ferroptosis: an iron-dependent form of nonapoptotic cell death / Dixon S.J., Lemberg K.M., Lamprecht M.R. et al // Cell. 2012. V. 149. Is. 5. pp. 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
22. Hentze M.W., Kuhn L.C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress // Proc. Nat. Acad. Sci. 1996. Vol. 93. pp. 8175-8182
23. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing / Ivan M., Kondo K., Yang H., et al // Science. 2001. Vol. 292 (5516). pp. 464-468. DOI: 10.1126/science.1059817
24. High activity and low toxicity of a novel CD71-targeting nanotherapeutic named The0504 on preclinical models of several human aggressive tumors / Falvo E., Damiani V., Conti G., et al // Journal of experimental & clinical cancer research. 2021. Vol. 40. Is. 1. Article number 63 DOI: 10.1186/s13046-021-01851-8
25. Human erythroid progenitors are directly infected by SARS-CoV-2: implications for emerging erythropoiesis in severe COVID-19 patients / Encabo H.H., Grey W., Garcia-Albornoz M., et al // Stem Cell Reports. 2021. Vol. 16. Is. 3. pp. 428-436. DOI: 10.1016/j.stemcr.2021.02.001
26. Hypobaric hypoxia regulates iron metabolism in rats / Li Y., Zhou Y., Zhang D., et al // J Cell Biochem. 2019. Vol. 120(8). pp. 14076-14087. DOI: 10.1002/jcb.28683
27. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy / Moura I.C., Centelles M.N., Arcos-Fajardo M., et al. // J Exp Med. 2001. Vol. 194. pp. 417-425. DOI: 10.1084/jem.194.4.417
28. Interactions Among Secretory Immunoglobulin A, CD71, and Transglutaminase-2 Affect Permeability of Intestinal Epithelial Cells to Gliadin Peptides / Lebreton C., Ménard S., Abed J., et al // Gastroenterology. 2012. Vol. 143, Is. 3. pp. 698-707.e4. DOI: 10.1053/j.gastro.2012.05.051
29. Intratumoral CD45+CD71+ erythroid cells induce immune tolerance and predict tumor recurrence in hepatocellular carcinoma / Chen J., Qiao Y.-D., Li X., et al // Cancer Letters. 2021. Vol. 499. pp. 85-98. DOI: 10.1016/j.canlet.2020.12.003
30. Lajoie J.M., Shusta E.V. Targeting receptor-mediated transport for delivery of biologics across the blood–brain barrier // Annu Rev Pharmacol Toxicol. 2015. Vol. 55. pp. 613–631. DOI: 10.1146/annurev-pharmtox-010814-124852
31. Lower Abundance and Impaired Function of CD71+ Erythroid Cells in Inflammatory Bowel Disease Patients During Pregnancy / Dunsmore G., Koleva P., Ghobakhloo N., et al // J Crohns Colitis. 2019. Vol. 1;13(2). pp. 230-244. DOI: 10.1093/ecco-jcc/jjy147.
32. Luck A.N., Mason A.B. Transferrin-mediated cellular iron delivery // Curr Top Membr. 2012. Vol. 69. pp. 3-35. DOI: 10.1016/B978-0-12-394390-3.00001-X.
33. Lyons J.V., Helms A., Pappas D. The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand // Analytica Chimica Acta. 2019. Vol. 1076. pp. 154-161. DOI.org/10.1016/j.aca.2019.05.040
34. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor / Ng P.P., Helguera G., Daniels T.R., et al // Blood. 2002. Vol. 108. pp. 2745-2754. DOI: 10.1182/blood-2006-04-020263.
35. Morphological definition of CD71 positive reticulocytes by various staining techniques and electron microscopy compared to reticulocytes detected by an automated hematology analyzer / Kono M., Kondo T., Takagi Y., et al // Clin. Chim. Acta, 2009. Vol. 404. Is. 2 . pp. 105-110. DOI: 10.1016/j.cca.2009.03.017
36. Motamedia M., Xu L., Elahi S. Correlation of transferrin receptor (CD71) with Ki67 expression on stimulated human and mouse T cells: The kinetics of expression of T cell activation markers // Journal of Immunological Methods. 2016. Vol. 437. pp. 43–52. DOI: 10.1016/j.jim.2016.08.002
37. Nakahata T., Okumura N. Cell surface antigen expression in human erythroid progenitors: erythroid and megakaryocytic markers // Leuk Lymphoma. 1994. Vol. 13. pp. 401-409. DOI: 10.3109/10428199409049629
38. Nie Y., Yang D., Oppenheim J.J. Alarmins and antitumor immunity // Clin. Therapeut. 2016. Vol. 38. pp. 1042-1053. DOI:10.1016/j.clinthera.2016.03.021
39. Nuclear receptor coactivator 4-mediated ferritinophagy drives proliferation of dental pulp stem cells in hypoxia / Yang A.D., Wang L.L., Jiang K., et al // Biochemical and biophysical research communications. 2021. Vol. 554. pp. 123-130. DOI: 10.1016/j.bbrc.2021.03.075
40. Pogoutse A.K., Moraes T.F. Transferrin Binding Protein B and Transferrin Binding Protein A2 Expand the Transferrin Recognition Range of Histophilus somni // J Bacteriol. 2020. Vol. 202(14). Article number e00177-20. DOI: 10.1128/JB.00177-20. Print 2020 Jun 25.
41. Ponka P., Lok C.N. The transferrin receptor: role in health and disease // Int. J. Biochem. Cell Biol. 1999. Vol. 31. P. 1111-1137. DOI: 10.1016/s1357-2725(99)00070-9.
42. Preferential uptake of antibody targeted calcium phosphosilicate nanoparticles by metastatic triple negative breast cancer cells in co-cultures of human metastatic breast cancer cells plus bone osteoblasts / Bussard K.M., Gigliotti C.M., Adair B.M., et al // Nanomedicine: Nanotechnology, Biology and Medicine. 2021. Vol.34. Article number 102383. DOI: 10.1016/j.nano.2021.102383
43. Proportion and role of CD45+ erythroid progenitor cells in patients with tongue cancer metastasis / Wang M.Q., Hou M., Lin D.P. et al // Zhonghua Kou Qiang Yi Xue Za Zhi. 2019. Vol. 54(7). pp. 445-449. DOI:10.376/cma.j.issn.1002-0098.2019.07.003.
44. Semenza G.L. HIF-1 and human disease: one highly involved factor // Genes Dev. 2000. Vol. 14. pp. 1983-1991
45. Significant biochemical, biophysical and metabolic diversity in circulating human cord blood reticulocytes / Malleret B., Xu F., Mohandas N., et al // PLoS One. 2013. Vol. 8. Article number e76062 pp. 105-110. DOI: 10.1371/journal.pone.0076062
46. Stafford J.L., Belosevic M. Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation // Dev. Comperative Immunol. 2003. Vol. 27. pp. 539-554. DOI: 10.1016/s0145-305x(02)00138-6
47. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion / Trevor C.E., Gonzalez-Munoz A.L., Macleod O.J.S., et al // Nat Microbiol. 2019. Vol. 4 (12). pp. 2074-2081. DOI: 10.1038/s41564-019-0589-0
48. Transferrin receptor 1 ablation in satellite cells impedes skeletal muscle regeneration through activation of ferroptosis / Ding H.R., Chen S.J., Pan X.H., et al // Journal of cachexia sarcopenia and muscle. 2021. DOI: 10.1002/jcsm.12700
49. Transferrin receptor 1 overexpression is associated with tumour de-differentiation and acts as a potential prognostic indicator of hepatocellular carcinoma /Adachi M., Kai K., Yamaji K., et al // Histopathology. 2019. Vol. 75., Is. 1. pp. 63-73. DOI: 10.1111/his.13847
50. Transferrin receptor 1 plays an important role in muscle development and denervation-induced muscular atrophy / Li Y., Cheng J.X., Yang H.H. et al / Neural regeneration research. 2021. Vol. 16. Is. 7. pp. 1308-1316. DOI: 10.4103/1673-5374.301024
51. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation / Tacchini L., Bianchi L., Bernelli-Zazzera A., et al //J Biol Chem, 1999. Vol. 274. pp. 24142-24146. DOI: 10.1074/jbc.274.34.24142
52. Transferrin Receptor Is a Specific Ferroptosis Marker / Feng H., Schorpp K., Jin J., et al // Cell Reports.Volume. 2020. Vol. 30, Is. 10. pp.3411-3423.e7. DOI: 10.1016/j.celrep.2020.02.049
53. Xie Y.J., Chen G.X. Dioscin induces ferroptosis and synergistic cytotoxicity with chemotherapeutics in melanoma cells // Biochemical and biophysical research communications. 2021. Vol. 557. pp. 213-220. DOI: 10.1016/j.bbrc.2021.04.024
Review
For citations:
Patrakeeva V.P., Kontievskaya E.V. The functional role of the transferrin receptor - TfR1. Yakut Medical Journal. 2021;(3):94-97. https://doi.org/10.25789/YMJ.2021.75.24