Preview

Якутский медицинский журнал

Расширенный поиск

Функциональная роль рецептора трансферрина – TfR1

https://doi.org/10.25789/YMJ.2021.75.24

Аннотация

В обзоре литературы представлены современные данные о функциональной роли рецептора трансферрина TfR1. Обобщены сведения о значимости данного рецептора в функционировании различных клеток организма, показана разнообразная роль данного рецептора в зависимости от типа клеток и стадии их активации.

Об авторах

В. П. Патракеева
Институт физиологии природных адаптаций ФГБУН ФИЦКИА УрО РАН
Россия

Патракеева Вероника Павловна – к.б.н., в.н.с., зав. лаб.



Е. В. Контиевская
Институт физиологии природных адаптаций ФГБУН ФИЦКИА УрО РАН
Россия

Контиевская Елена Владимировна – м.н.с



Список литературы

1. A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells / Li X., Zhou Y., Wickramaratne B., et al // Biomedical microdevices. 2021. Vol. 23. Is. 2. Article number 28. DOI: 10.1007/s10544-021-00566-z/2021

2. An anti-transferrin receptor-avidin fusion protein exhibits both strong proapoptotic activity and the ability to deliver various molecules into cancer cells / Ng P.P., Dela Cruz J.S., Sorour D.N., et al // Proc. Natl. Acad. Sci. U.S.A. 2002. Vol. 99. pp. 10706-10711. DOI: 10.1073/pnas.162362999.

3. Berthault C., Staels W., Scharfmann R. Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells // Molecular Metabolism. 2020. Vol. 42. Article 101060. DOI: 10.1016/j.molmet.2020.101060

4. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1 / Li L., Fang C.J., Ryan J.C., et al. // Proc Natl Acad Sci USA. 2010. Vol. 107. pp. 3505–3510. DOI: 10.1073/pnas.0913192107

5. CD71 + Erythroid Cells Exacerbate HIV-1 Susceptibility, Mediate trans-Infection, and Harbor Infective Viral Particles / Namdar A., Dunsmore G., Shahbaz S., et al // mBio. 2019. Vol. 10(6). Article number e02767-19. DOI:10.1128/mBio.02767-19.

6. CD71 + Erythroid Cells in Human Neonates Exhibit Immunosuppressive Properties and Compromise Immune Response Against Systemic Infection in Neonatal Mice / Elahi S., Vega-López M.A., Herman-Miguel V., et al // Front Immunol. 2020. Vol. 11. Article 597433. DOI: 10.3389/fimmu.2020.597433.eCollection 2020.

7. CD71 mesangial IgA1 receptor and the progression of IgA nephropathy / Jhee J.H., Nam B.Y., Park J.T., et al. // Translational Research. 2021. Vol. 230. pp. 34-43. DOI: 10.1016/j.trsl.2020.10.007

8. CD71(+) Erythroid Suppressor Cells Promote Fetomaternal Tolerance through Arginase-2 and PDL-1 /Delyea C., Bozorgmehr N., Koleva P., et al // Journal of immunology. 2018. Vol. 200. Is. 12. pp. 4044-4058. DOI: 10.4049/jimmunol.1800113

9. CD71+ erythroid cells from neonates born to women with preterm labor regulate cytokine and cellular responses / Miller D., Romero R., Unkel R. et al // J. Leukoc. Biol. 2018. Vol. 103. pp. 761-775. DOI: 10.1002/JLB.5A0717-291RRR

10. Deferoxamine: a reversible S-phase inhibitor of human lymphocyte proliferation / Lederman H.M., Cohen A., Lee J.W.W., et al // Blood. 1984. Vol. 64 (3). P. 748-753.

11. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human / Zhang W., Liu Q.Y., Haqqani A.S., et al // Fluids Barriers CNS. 2020. Vol. 17(1). Article number: 47. DOI: 10.1186/s12987-020-00209-0.

12. Downregulation of TfR1 promotes progression of colorectal cancer via the JAK/STAT pathway / Cui C., Cheng X., Yan L.et al // Cancer Manag Res. 2019. Vol. 11. pp. 6323-6341. DOI: 10.2147/CMAR.S198911

13. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition / Hangauer M.J., Viswanathan V.S., Ryan M.J., et al. // Nature. 2017. Vol. 551. pp. 247-250. DOI: 10.1038/nature24297

14. Elahi S. Neglected Cells: Immunomodulatory Roles of CD71+ Erythroid Cells // Trends in Immunology. 2019. Vol. 40, Is. 3. pp. 181-185. DOI.org/10.1016/j.it.2019.01.003

15. Elahi S., Ertelt J.M., Kinder J.M. et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection // Nature. 2013. Vol. 504. pp. 158-162. DOI: 10.1038/nature12675

16. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2 / Shahbaz S., Xu L., Osman M., et al // Stem Cell Reports. 2021. Vol. 16. Is. 5. pp. 1165-1181. DOI: 10.1016/j.stemcr.2021.04.001

17. Erythroid Suppressor Cells Compromise Neonatal Immune Response against Bordetella pertussis / Dunsmore G., Bozorgmehr N., Delyea C., et al // Journal of immunology. 2017. Vol. 199. Is. 6. pp. 2081-2095. DOI: 10.4049/jimmunol.1700742

18. Erythropoiesis and transferrin receptors / Moura I.C., Hermine O., Lacombe C., et alPatrick Mayeux // Curr Opin Hematol. 2015. Vol. 22(3). pp. 193-198. DOI: 10.1097/MOH.0000000000000133.

19. Expression of CD71 on cell proliferation in hematologic malignancy and its correlation with Ki-67 / Wei Y.Y., Zhang X.Z., Zhang F., et al // Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015. Vol. 23. pp. 234–240. DOI: 10.7534/j.issn.1009-2137.2015.01.044

20. Ferroptosis: A Regulated Cell Death / Stockwell B.R., Angeli F. J.P., Bayir H., et al // Metabolism, Redox Biology, and Disease Cell. 2017. Vol. 171. pp. 273-285. DOI:10.1016/j.cell.2017.09.021

21. Ferroptosis: an iron-dependent form of nonapoptotic cell death / Dixon S.J., Lemberg K.M., Lamprecht M.R. et al // Cell. 2012. V. 149. Is. 5. pp. 1060-1072. DOI: 10.1016/j.cell.2012.03.042.

22. Hentze M.W., Kuhn L.C. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress // Proc. Nat. Acad. Sci. 1996. Vol. 93. pp. 8175-8182

23. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing / Ivan M., Kondo K., Yang H., et al // Science. 2001. Vol. 292 (5516). pp. 464-468. DOI: 10.1126/science.1059817

24. High activity and low toxicity of a novel CD71-targeting nanotherapeutic named The0504 on preclinical models of several human aggressive tumors / Falvo E., Damiani V., Conti G., et al // Journal of experimental & clinical cancer research. 2021. Vol. 40. Is. 1. Article number 63 DOI: 10.1186/s13046-021-01851-8

25. Human erythroid progenitors are directly infected by SARS-CoV-2: implications for emerging erythropoiesis in severe COVID-19 patients / Encabo H.H., Grey W., Garcia-Albornoz M., et al // Stem Cell Reports. 2021. Vol. 16. Is. 3. pp. 428-436. DOI: 10.1016/j.stemcr.2021.02.001

26. Hypobaric hypoxia regulates iron metabolism in rats / Li Y., Zhou Y., Zhang D., et al // J Cell Biochem. 2019. Vol. 120(8). pp. 14076-14087. DOI: 10.1002/jcb.28683

27. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy / Moura I.C., Centelles M.N., Arcos-Fajardo M., et al. // J Exp Med. 2001. Vol. 194. pp. 417-425. DOI: 10.1084/jem.194.4.417

28. Interactions Among Secretory Immunoglobulin A, CD71, and Transglutaminase-2 Affect Permeability of Intestinal Epithelial Cells to Gliadin Peptides / Lebreton C., Ménard S., Abed J., et al // Gastroenterology. 2012. Vol. 143, Is. 3. pp. 698-707.e4. DOI: 10.1053/j.gastro.2012.05.051

29. Intratumoral CD45+CD71+ erythroid cells induce immune tolerance and predict tumor recurrence in hepatocellular carcinoma / Chen J., Qiao Y.-D., Li X., et al // Cancer Letters. 2021. Vol. 499. pp. 85-98. DOI: 10.1016/j.canlet.2020.12.003

30. Lajoie J.M., Shusta E.V. Targeting receptor-mediated transport for delivery of biologics across the blood–brain barrier // Annu Rev Pharmacol Toxicol. 2015. Vol. 55. pp. 613–631. DOI: 10.1146/annurev-pharmtox-010814-124852

31. Lower Abundance and Impaired Function of CD71+ Erythroid Cells in Inflammatory Bowel Disease Patients During Pregnancy / Dunsmore G., Koleva P., Ghobakhloo N., et al // J Crohns Colitis. 2019. Vol. 1;13(2). pp. 230-244. DOI: 10.1093/ecco-jcc/jjy147.

32. Luck A.N., Mason A.B. Transferrin-mediated cellular iron delivery // Curr Top Membr. 2012. Vol. 69. pp. 3-35. DOI: 10.1016/B978-0-12-394390-3.00001-X.

33. Lyons J.V., Helms A., Pappas D. The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand // Analytica Chimica Acta. 2019. Vol. 1076. pp. 154-161. DOI.org/10.1016/j.aca.2019.05.040

34. Molecular events contributing to cell death in malignant human hematopoietic cells elicited by an IgG3-avidin fusion protein targeting the transferrin receptor / Ng P.P., Helguera G., Daniels T.R., et al // Blood. 2002. Vol. 108. pp. 2745-2754. DOI: 10.1182/blood-2006-04-020263.

35. Morphological definition of CD71 positive reticulocytes by various staining techniques and electron microscopy compared to reticulocytes detected by an automated hematology analyzer / Kono M., Kondo T., Takagi Y., et al // Clin. Chim. Acta, 2009. Vol. 404. Is. 2 . pp. 105-110. DOI: 10.1016/j.cca.2009.03.017

36. Motamedia M., Xu L., Elahi S. Correlation of transferrin receptor (CD71) with Ki67 expression on stimulated human and mouse T cells: The kinetics of expression of T cell activation markers // Journal of Immunological Methods. 2016. Vol. 437. pp. 43–52. DOI: 10.1016/j.jim.2016.08.002

37. Nakahata T., Okumura N. Cell surface antigen expression in human erythroid progenitors: erythroid and megakaryocytic markers // Leuk Lymphoma. 1994. Vol. 13. pp. 401-409. DOI: 10.3109/10428199409049629

38. Nie Y., Yang D., Oppenheim J.J. Alarmins and antitumor immunity // Clin. Therapeut. 2016. Vol. 38. pp. 1042-1053. DOI:10.1016/j.clinthera.2016.03.021

39. Nuclear receptor coactivator 4-mediated ferritinophagy drives proliferation of dental pulp stem cells in hypoxia / Yang A.D., Wang L.L., Jiang K., et al // Biochemical and biophysical research communications. 2021. Vol. 554. pp. 123-130. DOI: 10.1016/j.bbrc.2021.03.075

40. Pogoutse A.K., Moraes T.F. Transferrin Binding Protein B and Transferrin Binding Protein A2 Expand the Transferrin Recognition Range of Histophilus somni // J Bacteriol. 2020. Vol. 202(14). Article number e00177-20. DOI: 10.1128/JB.00177-20. Print 2020 Jun 25.

41. Ponka P., Lok C.N. The transferrin receptor: role in health and disease // Int. J. Biochem. Cell Biol. 1999. Vol. 31. P. 1111-1137. DOI: 10.1016/s1357-2725(99)00070-9.

42. Preferential uptake of antibody targeted calcium phosphosilicate nanoparticles by metastatic triple negative breast cancer cells in co-cultures of human metastatic breast cancer cells plus bone osteoblasts / Bussard K.M., Gigliotti C.M., Adair B.M., et al // Nanomedicine: Nanotechnology, Biology and Medicine. 2021. Vol.34. Article number 102383. DOI: 10.1016/j.nano.2021.102383

43. Proportion and role of CD45+ erythroid progenitor cells in patients with tongue cancer metastasis / Wang M.Q., Hou M., Lin D.P. et al // Zhonghua Kou Qiang Yi Xue Za Zhi. 2019. Vol. 54(7). pp. 445-449. DOI:10.376/cma.j.issn.1002-0098.2019.07.003.

44. Semenza G.L. HIF-1 and human disease: one highly involved factor // Genes Dev. 2000. Vol. 14. pp. 1983-1991

45. Significant biochemical, biophysical and metabolic diversity in circulating human cord blood reticulocytes / Malleret B., Xu F., Mohandas N., et al // PLoS One. 2013. Vol. 8. Article number e76062 pp. 105-110. DOI: 10.1371/journal.pone.0076062

46. Stafford J.L., Belosevic M. Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation // Dev. Comperative Immunol. 2003. Vol. 27. pp. 539-554. DOI: 10.1016/s0145-305x(02)00138-6

47. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion / Trevor C.E., Gonzalez-Munoz A.L., Macleod O.J.S., et al // Nat Microbiol. 2019. Vol. 4 (12). pp. 2074-2081. DOI: 10.1038/s41564-019-0589-0

48. Transferrin receptor 1 ablation in satellite cells impedes skeletal muscle regeneration through activation of ferroptosis / Ding H.R., Chen S.J., Pan X.H., et al // Journal of cachexia sarcopenia and muscle. 2021. DOI: 10.1002/jcsm.12700

49. Transferrin receptor 1 overexpression is associated with tumour de-differentiation and acts as a potential prognostic indicator of hepatocellular carcinoma /Adachi M., Kai K., Yamaji K., et al // Histopathology. 2019. Vol. 75., Is. 1. pp. 63-73. DOI: 10.1111/his.13847

50. Transferrin receptor 1 plays an important role in muscle development and denervation-induced muscular atrophy / Li Y., Cheng J.X., Yang H.H. et al / Neural regeneration research. 2021. Vol. 16. Is. 7. pp. 1308-1316. DOI: 10.4103/1673-5374.301024

51. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation / Tacchini L., Bianchi L., Bernelli-Zazzera A., et al //J Biol Chem, 1999. Vol. 274. pp. 24142-24146. DOI: 10.1074/jbc.274.34.24142

52. Transferrin Receptor Is a Specific Ferroptosis Marker / Feng H., Schorpp K., Jin J., et al // Cell Reports.Volume. 2020. Vol. 30, Is. 10. pp.3411-3423.e7. DOI: 10.1016/j.celrep.2020.02.049

53. Xie Y.J., Chen G.X. Dioscin induces ferroptosis and synergistic cytotoxicity with chemotherapeutics in melanoma cells // Biochemical and biophysical research communications. 2021. Vol. 557. pp. 213-220. DOI: 10.1016/j.bbrc.2021.04.024


Рецензия

Для цитирования:


Патракеева В.П., Контиевская Е.В. Функциональная роль рецептора трансферрина – TfR1. Якутский медицинский журнал. 2021;(3):94-97. https://doi.org/10.25789/YMJ.2021.75.24

For citation:


Patrakeeva V.P., Kontievskaya E.V. The functional role of the transferrin receptor - TfR1. Yakut Medical Journal. 2021;(3):94-97. https://doi.org/10.25789/YMJ.2021.75.24

Просмотров: 15


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)