The use of 3D printing for preoperative planning and individualization of treatment in traumatology and orthopedics: conceptual evolution and development prospects
https://doi.org/10.25789/YMJ.2025.89.22
Abstract
This review focuses on modern advances in the use of 3D printing to create models, implants, and instruments that adapt to the individual anatomical characteristics of the patient. The benefits of 3D printing include improving the accuracy of surgical procedures and reducing operational risks through personalized solutions. At the same time, the review highlights key obstacles to the introduction of technology into clinical practice, such as high costs and the need for standardization of processes. Despite these challenges, 3D printing has significant potential to transform medical approaches and teaching methods, which opens up prospects for creating more effective and personalized therapeutic techniques in the field of orthopedics and traumatology.
About the Authors
Z. Z. YunusovaRussian Federation
A. S. Saidov
Russian Federation
M. A. Saidova
Russian Federation
A. R. Atayev
Russian Federation
References
1. Gorbatov R.O., Kazakov A.A., Romanov A.D. Development of technology for creating individual orthoses for immobilization of upper limb joints using 3D printing // Bulletin of VolgSMU. 2018. No. 3 (67). P. 124-128. doi: 10.19163/1994-9480-2018-3(67)-124-128
2. Individual navigation templates for installing transpedicular screws in spinal surgery: a systematic review / E.V. Kovalev, S.I. Kirilenko, A.N. Mazurenko, [et al.] // Problems of health and ecology. 2022. No.19(3). P.5-17. DOI: doi: 10.51523/2708-6011.2022-19-3-01
3. Karyakin N.N., Gorbatov R.O. Technology of creating individual orthopedic insoles using 3D printing // Modern problems of science and education. 2017. No. 3. P.42
4. 3D computer modeling with the production of individual patterns for navigating the insertion of screws in the cervical spine / A.V. Burtsev, O.M. Pavlova, S.O. Ryabykh, [et al.] // Spine surgery. 2018. Vol. 15. No. 2. P. 33-38.
5. Application of additive 3D printing technologies in traumatology-orthopedics and neurosurgery / A.V. Yarikov, R.O. Gorbatov, I.I. Stolyarov [et al.] // Doctor. 2021. No. 32 (10). P. 8-16. doi: 10.29296/25877305 2021-10-02
6. Application of individual 3D navigation matrices for transpedicular fixation of subaxial cervical and upper thoracic vertebrae / R.A. Kovalenko, V.V. Rudenko, V. A. Kashin, [et al.] // Spinal surgery. 2019. Vol. 16. № 2. P. 35-41.
7. The use of a navigation template for the passage of the vertebral pedicle during transpedicular fixation / A.V. Kosulin, D.V. Elyakin, K.D. Lebedeva, [et al.] // Pediatrician. 2019. Vol. 10. No. 3. P. 45-50. doi: 10.17816/PED10345-50
8. The use of guiding templates in the surgical treatment of preschool children with congenital scoliosis of thoracic and lumbar localization / D.N. Kokushin, S.V. Vissarionov, A.G. Baindurashvili, [et al.] // Orthopedics, traumatology and reconstructive surgery of childhood. 2020. Vol. 8. Issue 3. P. 305-316. doi: 10.17816/PTORS42000
9. Surgical treatment of children with congenital deformities of the thoracic and lumbar spine using 3D prototyping technologies / A.E. Boyko, D.N. Kokushin, A.G. Baindurashvili, [et al.] // International Journal of Applied and Fundamental Research. 2020. No. 7. P. 57-61
10. Surgical treatment of patients with tumors of the long tubular bones of the upper extremities using individual implants made of bone-substituting material created using 3D printing technologies / N.N. Karyakin, R.O. Gorbatov, A.E. Novikov, [et al.] // Genius of Orthopedics. – 2017. – No..23 (3). – P.323-330
11. Knee arthroplasty using individual guides created using 3D printing technologies / N.N. Karyakin, E.E. Malyshev, R.O. Gorbatov [et al.] // Traumatology and Orthopedics of Russia. 2017. №. 23 (3). P.110-118. doi: 10.21823/2311-2905-2017-23-3-110-118
12. 3D printing-based minimally invasive cannulated screw treatment of unstable pelvic fracture / L. Cai, Y. Zhang, C. Chen [et al.] // J Orthop Surg Res. 2018. №.13(1). Р.71. doi: 10.1186/s13018-018-0778-1.
13. 3-dimensionally printed patient-specific glenoid drill guides vs. standard non-specific instrumentation: a randomized controlled trial comparing the accuracy of glenoid component placement in anatomic total shoulder arthroplasty / S. P. Dasari, M. E. Menendez, A. E. Orias [et al.] // Journal of Shoulder and Elbow Surgery. 2024. Vol. 33, No. 2. P. 223–233.
14. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration / D. H. Rosenzweig, E. Carelli, T. Steffen [et al.]// Int J Mol Sci. 2015. Vol. 16. P. 15118-15135.
15. A review of current clinical applications of three-dimensional printing in spine surgery / W. Cho, A.V. Job, J. Chen [et al.]// Asian Spine J. 2018. Vol. 12, No. 1. P. 171-177. doi: 10.4184/asj.2018.12.1.171.
16. Accuracy and practicability of a patient-specific guide using acetabular superolateral rim during THA in Crowe II/III DDH patients: a retrospective study / C. Wang, H. Xiao, W. Yang, [et al.] // Journal of Orthopaedic Surgery and Research. 2019. Vol. 14, No. 1. P. 19. doi: 10.1186/s13018-018-1029-1
17. Accuracy of patient-specific guided implantation of the glenoid component in reversed shoulder arthroplasty / O. Verborgt, A.I. Hachem, K. Eid [et al.] // Orthop Traumatol Surg Res. 2018. Vol. 104, No. 6. P. 767-772. doi: 10.1016/j.otsr.2018.01.010.
18. Application of 3D printing rapid prototyping-assisted percutaneous fixation in the treatment of intertrochanteric fracture / S.N. Zheng, Q.Q. Yao, F.Y. Maо [et al.]// Exp Ther Med. 2017. Vol. 14, No. 4. P. 3644-3650.
19. Applications and accuracy of 3D-printed surgical guides in traumatology and orthopaedic surgery: a systematic review and meta-analysis / S. Hess, J. Husarek, M. Müller, [et al.]// J Exp Orthop. 2024. Vol. 11, No. 3. e12096. doi: 10.1002/jeo2.12096. PMID: 39135870; PMCID: PMC11317891.
20. Are custom triflange acetabular components effective for reconstruction of catastrophic bone loss? / C.C. Berasi, K.R. Berend, J.B. Adams, [et al.]// Clin Orthop Relat Res. 2014. №.473 (2). Р.528–535. doi: 10.1007/s11999-014-3969-z
21. Auricchio F., Marconi S. 3D printing: clinical applications in orthopaedics and traumatology // EFORT Open Rev. 2017. Vol. 1, No. 5. P. 121-127. doi: 10.1302/2058-5241.1.000012. PMID: 28461938; PMCID: PMC5367547.
22. Can preoperative 3D printing change surgeon's operative plan for distal tibia fracture? / Kang H. J., Kim B. S., Kim S. M. [et al.] // Biomed Res Int. 2019. 7059413.
23. Clinical use of 3D printing guide plate in posterior lumbar pedicle screw fixation / H. Chen, D. Wu, H. Yang, [et al.] // Med Sci Monit. 2015. Vol. 21. P. 3948-54. doi: 10.12659/msm.895597.
24. Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: a randomized prospective clinical trial / M.D. Hendel, J.A. Bryan, W.K. Barsoum [et al.] // Journal of Bone and Joint Surgery. 2012. Vol. 94, No. 23. P. 2167–2175. doi: 10.2106/JBJS.K.01209
25. Comparison of the conventional surgery and the surgery assisted by 3D printing technology in the treatment of calcaneal fractures / W. Zheng, Z. Tao, Y. Lou, [et al.] // J Invest Surg. 2018. Vol. 31, No. 6. P. 557-567.
26. Complications of pedicle screw fixation in reconstructive surgery of the cervical spine / K. Abumi, Y. Shono, M. Ito, [et al.]// Spine (Phila Pa 1976). 2000. №.25(8). P. 962–969. doi: 10.1097/00007632-200004150-00011. PMID: 10767809.
27. Computer-assisted 3-dimensional reconstructions of scaphoid fractures and nonunions with and without the use of patient-specific guides: early clinical outcomes and postoperative assessments of reconstruction accuracy / A. Schweizer, F. Mauler, L. Vlachopoulos, [et al.] // J Hand Surg Am. 2016. Vol. 41, No. 1. P. 59-69. doi: 10.1016/j.jhsa.2015.10.009.
28. Computer-Assisted Planning and Patient-Spe cific Instruments for Bone Tumor Resection within the Pelvis: A Series of 11 Patients / F. Gouin, L. Paul, G.A. Odri [et al.] // Sarcoma. 2014. Р. 842709. doi: 10.1155/2014/842709. – PMID: 25100921; PMCID: PMC4101950.
29. Development of a 3-D printing laboratory for foot and ankle applications / C. E. Pehde, J. Bennett, B. Lee Peck, [et al.]// Clin Podiatr Med Surg. 2020. Vol. 37, No. 2. P. 195-213. doi: 10.1016/j.cpm.2019.12.011.
30. Effect of 3D printing technology on pelvic fractures: a Meta-analysis / Y.D. Zhang, R.Y. Wu, D.D. Xie, [et al.]// Zhongguo Gu Shang. 2018. Vol. 31, No 5. Р.465-471. doi: 10.3969/j.issn.10030034.2018.05.013.
31. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements / S. Parratte, M.W. Pagnano, R.T. Trousdale, [et al.]// The Journal of Bone and Joint Surgery. American Volume. 2010. Vol. 92, No. 12. P. 2143–2149. doi:10.2106/JBJS.I.01398
32. Efficacy of three-dimensional guide plate technique guided sacral 2 alar iliac screws fixation in patients with degenerative kyphoscoliosis / L. Cui, S. Gong, S. Xie, [et al.]// American Journal of Translational Research. 2021. Vol. 13, No. 5. P. 5127–5136.
33. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences / B.C. Gross, J.L. Erkal, S.Y. Lockwood [et al.] // Anal Chem. 2014. Vol. 86, No. 7. P. 3240-3253. doi: 10.1021/ac403397r
34. Evaluation of a transpedicular drill guide for pedicle screw placement in the thoracic spine / J.M. Mac-Thiong, H. Labelle, M. Rooze, [et al.]// Eur Spine J. 2003. №.12(5). Р. 542-547. doi: 10.1007/s00586-003-0549-4. – PMID: 12783286; PMCID: PMC3468009.
35. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing / B. Leukers, H. Gülkan, S.H. Irsen [et al.] // J Mater Sci Mater Med. 2005. Vol. 16, No. 12. P. 1121-1124. doi: 10.1007/s10856-005-4716-5.
36. Impacted bone allograft personalised by a novel 3D printed customization kit produces high surgical accuracy in medial opening wedge high tibial osteotomy: a pilot study / W. Van Genechten, A. Van Haver, S. Bartholomeeusen [et al.]// Journal of Experimental Orthopaedics. 2023. Vol. 10, No. 1. P. 24. doi:10.1186/s40634-023-00593-0
37. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine / F. Guo, J. Dai, J. Zhang, [et al.]// PLoS One. 2019. №.14(2). Р.e0212213. doi: 10.1371/journal.pone.0212213. PMID: 28152039; PMCID: PMC5289602.
38. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system / Y.W. Roh, T.W. Kim, S. Lee [et al.]// Clinical Orthopaedics and Related Research. 2013. Vol. 471, No. 12. P. 3988–3995. doi:10.1007/s11999-013-3206-1
39. Jr. Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures / T.J. Dekker, J.R. Steele, A.E. Federer et al.// Foot Ankle Int. 2018. Vol. 39, No. 8. P. 916-921. doi: 10.1177/1071100718770133.
40. Krettek C., Bruns N. Current concepts and new developments of 3D printing in trauma surgery // Unfallchirurg. 2019. No.122(4). Р.256-269.– doi: 10.1007/s00113-019-0636-6.
41. Matsukawa K., Kaito T., Abe Y. Accuracy of cortical bone trajectory screw placement using patient-specific template guide system // Neurosurgical Review. 2020. Vol. 43, No. 4. P. 1135–1142. doi:10.1007/s10143-019-01140-1
42. Mazzarese B., Nicotera N., Theriault H. Modeling bone fixation implants with absorbable polymers using 3-D printing // Biomedical Engineering Conference (NEBEC), 2015 41st Annual Northeast 2015; 7117129.
43. Novel alignment measurement technique for total knee arthroplasty using patient specific instrumentation / K. Yamamura, Y. Minoda, S. Mizokawa, [et al.] // Archives of Orthopaedic and Trauma Surgery. 2017. Vol. 137, No. 3. P. 401–407. doi:10.1007/s00402-017-2628-8
44. Organ printing: computer-aided jet-based 3D tissue engineering / V. Mironov, T. Boland, T. Trusk [et al.] // Trends Biotechnol. 2003. Vol. 21, No. 4. P. 157-161. doi:10.1016/S0167-7799(03)00033-7.
45. Patient Specific Instruments for Complex Tumor Resection-Reconstruction Surgery within the Pelvis: A Series of 4 Cases / E. Cernat, P.-L. Docquier, L. Paul [et al.] // Chirurgia. 2016. №.111(5). 439-444. doi: 10.21614/chirurgia.111.5.439. PMID: 27819644.
46. Patient-specific glenoid guides provide accuracy and reproducibility in total shoulder arthroplasty / M.O. Gauci, P. Boileau, M. Baba [et al.] // The Bone & Joint Journal. 2016. Vol. 98-B. P. 1080–1085.
47. Pedicle screw placement safety with the aid of patient-specific guides in a case series of patients with thoracic scoliosis / J. Mohar, M. Valič, E. Podovšovnik, [et al.]// European Spine Journal. 2022. Vol. 31, No. 12. P. 3544–3550. doi: 10.1007/s00586-022-07427-0
48. Personalised image- based templates for intraoperative guidance / E. Berry, M. Cuppone, S. Porada [et al.]// Proc Inst Mech Eng H. 2005. No. 219(2). Р.111-118. doi: 10.1243/095441105X9273. – PMID: 15819482.
49. Proper benefit of a three-dimensional pre-operative planning software for glenoid component positioning in total shoulder arthroplasty / A. Jacquot, M. O. Gauci, J. Chaoui, [et al.]// Int Orthop. 2018. Vol. 42, No. 12. P. 2897-2906. doi: 10.1007/s00264-018-4037-1.
50. Sariali E., Kajetanek C., Catonné Y. Comparison of custom cutting guides based on three-dimensional computerized CT-scan planning and a conventional ancillary system based on two-dimensional planning in total knee arthroplasty: a randomized controlled trial // International Orthopaedics. 2019. Vol. 43, No. 11. P. 2529–2538. doi:10.1007/s00264-019-04357-3
51. Sheth U., Theodoropoulos J., Abouali J. Use of 3-dimensional printing for preoperative planning in the treatment of recurrent anterior shoulder instability // Arthrosc Tech. 2015. Vol. 4. e311-e316. PMID: 26759768.
52. Smoczok M., Starszak K., Starszak W. 3D printing as a significant achievement for application in posttraumatic surgeries - a literature review // Curr Med Imaging. 2021. Vol. 17, No. 7. P. 814-819. doi: 10.2174/157340561666620051000381. PMID: 32386498.
53. Tan G., Zhou Y., Sooriyaarachchi D. Musculoskeletal tissue engineering using fibrous biomaterials // Methods Mol Biol. 2021. Vol. 2193. P. 31-40. doi: 10.1007/978-1-0716-0845-6_4
54. The accuracy of a method for printing three-dimensional spinal models / Wu A.M., Shao Z.X., Wang J.S. [et al.] // PLoS One. 2015. Vol. 10, No. 4. e0124291. doi: 10.1371/journal.pone.0124291.
55. The accuracy of patient-specific instrumentation with laser guidance in a dynamic total hip arthroplasty: a radiological evaluation / Ferretti A., Iannotti F., Proietti L., [et al.] // Sensors. 2021. Vol. 21, No. 12. P. 4232. doi:10.3390/s21124232
56. The use of patient-specific instrumentation improves the accuracy of acetabular component placement / Buller L., Smith T., Bryan J. [et al.] // J Arthroplasty. 2013. №.28(4). Р.631-636. doi: 10.1016/j.arth.2012.12.001. PMID: 23498350.
57. The use of physical biomodelling in complex spinal surgery / Izatt M.T., Thorpe P.L., Thompson R.G., [et al.] // Eur Spine J. 2007. Vol. 16, No. 9. P. 1507-1518. doi:10.1007/s00586-006-0289-3.
58. Three-dimensional analysis of accuracy of component positioning in total knee arthroplasty with patient specific and conventional instruments: a randomized controlled trial / De Vloo R., Pellikaan P., Dhollander A. [et al.] // The Knee. 2017. Vol. 24, No. 6. P. 1469–1477. doi: 10.1016/j.knee.2017.08.059
59. Three-dimensional imaging and templating improve glenoid implant positioning / Iannotti J.P., Weiner S., Rodriguez E. [et al.] // J Bone Joint Surg Am. 2015. Vol. 97, No. 8. P. 651-658. doi: 10.2106/JBJS.N.00493.
60. Three-dimensional printing in orthopaedic surgery: current applications and future developments / Wixted C.M., Peterson J.R., Kadakia R.J., [et al.] // J Am Acad Orthop Surg Glob Res Rev. 2021. Vol. 5, No. 4. e20.00230-11. doi: 10.5435/JAAOSGlobal-D-20-00230. PMID: 33877073; PMCID: PMC8059996.
61. Three-dimensional printing technology in orthopaedics / Skelley N.W., Smith M.J., Ma R. [et al.] // J Am Acad Orthop Surg. 2019. Vol. 27, No. 24. P. 918-925. doi: 10.5435/JAAOS-D-18-00746.
62. Trauner K.B. The emerging role of 3D printing in arthroplasty and orthopedics // J Arthroplasty. 2018. Vol. 33. P. 2352-2354.
63. Use of 3D printing in complex spinal surgery: historical perspectives, current usage, and future directions / Grant C.A., Izatt M.T., Labrom R.D. [et al.] // Tech Orthop. 2016. Vol. 31, No. 3. P. 172-180.
64. Uso de planificación preoperatoria e impresión 3D en ortopedia y traumatología: ingresando en una nueva era / Moya D., Gobbato B., Valente S. [et al.]// Acta Ortop Mex. 2022. Vol. 36, No. 1. P. 39-47. Spanish. PMID: 36099572.
Review
For citations:
Yunusova Z.Z., Saidov A.S., Saidova M.A., Atayev A.R. The use of 3D printing for preoperative planning and individualization of treatment in traumatology and orthopedics: conceptual evolution and development prospects. Yakut Medical Journal. 2025;(1):94-102. https://doi.org/10.25789/YMJ.2025.89.22