Preview

Yakut Medical Journal

Advanced search

Features of genetic markers of oxidative stress and functional laboratory parameters in comorbid patients with carotid atherosclerosis

https://doi.org/10.25789/YMJ.2025.89.10

Abstract

We studied the characteristics of dependence of the degree of atherosclerotic stenosis of carotid arteries on the level of expression of oxidative stress marker genes in patients with atherosclerosis and comorbid pathology. The association of decreasing the expression of antioxidant protection factors GSTP1, NRF2, HMOX1 with echoscopic features and increasing atherosclerotic stenosis of carotid arteries was identified; inverse correlation between HMOX1 gene expression and right internal carotid artery stenosis degree, between GSTP1 gene expression level and left internal carotid artery stenosis degree; direct correlation between the diameter of the right common carotid artery and the total cholesterol and low serum protein cholesterol levels. The knowledge gained can be used to develop a new medical technology for predicting the progression of atherosclerosis.

About the Authors

V. Ya. Polyakov
ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины»
Russian Federation


Yu. A. Nikolaev
ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины»
Russian Federation


A. V. Gusev
ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины»
Russian Federation


E. V. Sevostyanova
ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины»
Russian Federation


References

1. Belyalov F.I. Treatment of heart diseases in conditions of comorbidity. Irkutsk, 2014. 311 p.

2. Vakitova Z.R. Assessment of cardiovascular risk in comorbid pathology // Beau Bassin. 2017. 46 p.

3. Dynamics of prevalence of combined chronic non-communicable diseases in workers of the Peace Republic of Sakha (Yakutia) / J.A. Nikolaev, V.A. Shkuroapi, I.M. Mitrofanov [et al. ] // Bulletin of the Siberian Branch of the Russian Academy of Medical Sciences. 2012. 32 (5). 69-74.

4. Instrumental and laboratory methods in the detection of unstable atherosclerotic plaques / D.N. Nozazze, O.S. Burmistenko, A.E. Semenova [et al. ] //Atherosclerosis and dyslipidemia. 2013. 3 (12). P. 4-10.

5. Clinical recommendations «Arterial hypertension in adults». developer Russian Cardiology Society. 2020. 136 pp. https://scardio.ru/content/Guidelines/Clinic_rek_AG_2020.pdf

6. Lathfullin I.A. Atherosclerosis (summary of the history of development, causes, pathogenesis of the disease, risk factors, prevention principles). Kazan: June 2015. 144 p.

7. Svistunov V.V., Makarova A.E., Vorontsova M.V. Atherosclerosis, hypertension / FSBEI HE Irkutsk State Medical University of the Ministry of Health of the Russian Federation. Irkutsk: Irkutsk State Medical University, 2018. 70 p.

8. Arterial hypertension associated with somatic pathology in present-day practice of internal diseases / Nikolaev Yu.A., et al // Health. 2014. Vol. 6, No.1. P. 94-98.

9. Botts S. R., Fish J. E., Howe K. L. Dysfunctional vascular endothelium as a driver of atherosclerosis: emerging insights into pathogenesis and treatment // Frontiers in Pharmacology. 2021. No 12. 1-18.

10. Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review / Mundi S., Massaro M., Scoditti E. et al. // Cardiovascular Research. 2018. No. 114(1). 35-52. DOI: 10.1093/cvr/cvx226

11. Itaconate suppresses atherosclerosis by activating a Nrf2-dependent antiinflammatory response in macrophages in mice / Song J., Zhang Y, Frieler R.A. et al. // J Clin Invest. 2023. No 12;134(3):e173034.

12. Lu H., Daugherty A. Atherosclerosis: cell biology and lipoproteins // Current opinion in lipidology. 2015. Vol. 26, No. 2. P. 152-153.

13. MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction / Luo X, Wang L , Zhu X et al. // Redox Biology 69 (2024) 102987.

14. Nrf-2 mediated heme oxygenase-1 expression, an antioxidant-independent mechanism, contributes to anti-atherogenesis and vascular protective effects of ginkgo biloba extract / Chen J.S., Huang P.H., Wang C.H. et al.// Atherosclerosis. 2011. No 214(2). 301–309. DOI: 10.1016/j.atherosclerosis.2010.11.010

15. Rabbani P.S., Soares M.A., Hameedi S.G. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells // Diabetes. 2019. No 68(1). 141–155. doi: 10.2337/db18-0232.

16. Role of Nrf2 and its activators in cardiocerebral vascular disease / Cheng L., Zhang H., Wu F. [et al.] //Oxidative Medicine and Cellular Longevity. 2020. No. 5 Article ID 4683943. doi: 10.1155/2020/4683943.

17. The role of carotid ultrasound in assessing carotid atherosclerosis in individuals at low-to-intermediate cardiovascular risk / Coll B., Betriu A., Feinstein S.B. et al. // Revista Española de Cardiología (English Edition). 2013. Vol. 66, No. 12. P. 929-934. doi: 10.1016/j.rec.2013.05.030.

18. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases / Cuadrado A., Rojo A. I., Wells G. et al.// Nature Reviews Drug Discovery. 2019. No. 18(4). 295–317. doi: 10.1038/s41573-018-0008-x.

19. The role of Nrf2 in cardiovascular function and disease/ Satta S., Mahmoud A. M., Wilkinson F. L. et al. // Oxidative Medicine and Cellular Longevity. 2017. 18 p. Article ID 9237263. DOI: 10.1155/2017/9237263

20. Tonelli C., Chio I. I. C., Tuveson D.A. Transcriptional regulation by Nrf2 / Antioxidants and Redox Signaling // 2018. No 29(17). 1727–1745. DOI: 10.1089/ars.2017.7342


Review

For citations:


Polyakov V.Ya., Nikolaev Yu.A., Gusev A.V., Sevostyanova E.V. Features of genetic markers of oxidative stress and functional laboratory parameters in comorbid patients with carotid atherosclerosis. Yakut Medical Journal. 2025;(1):39-43. https://doi.org/10.25789/YMJ.2025.89.10

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)