The role of microRNAs in the pathogenesis of ovarian cancer
https://doi.org/10.25789/YMJ.2024.85.21
Abstract
This review collects and summarizes the literature data accumulated over the past few years on the participation of microRNAs in the pathogenesis, progression and metastasis of ovarian cancer, as well as their role in the emergence of multidrug resistance, and considers their possibility of use as prognostic and diagnostic biomarkers.
About the Authors
E. T. MingazhevaRussian Federation
MINGAZHEVA Elvira Tagirovna – Senior Researcher of laboratory population and medical genetics, PhD in Biology
Yu. Yu. Fedorova
Russian Federation
FEDOROVA Yulia Yurievna – Senior Researcher of laboratory population and medical genetics, PhD in Biology
A. Kh. Nurgalieva
Russian Federation
NURGALIEVA Alfiya Khamatyanovna – Senior Researcher at the Laboratory of Population and Medical Genetics
Ya. V. Valova
Russian Federation
VALOVA Yana Valeryevna – Junior Researcher of laboratory population and medical genetics
E. A. Andreeva
Russian Federation
ANDREEVA Ekaterina Anatolyevna – PhD student
A. V. Sagitova
Russian Federation
SAGITOVA Alina Valerievna – Master Department of Medical Genetics and Fundamental Medicine
R. R. Faiskhanova
Russian Federation
FAISHKHANOVA Rania Razyapovna – oncologist, Candidate of Medical Sciences
D. D. Sakaeva
Russian Federation
SAKAEVA Dina Damirovna – Department of Pharmacology with a Course of Clinical Pharmacology, Professor, Doctor of Medical Sciences
E. K. Khusnutdinova
Russian Federation
KHUSNUTDINOVA Elza Kamilevna – Professor, Doctor of Sciences in Biology, Academician of the Academy of Sciences of the Republic Bashkortostan, Corresponding member of the Russian Academy of Eductaion, Director
D. S. Prokofyeva
Russian Federation
PROKOFYEVA Darya Simonovna – head of laboratory population and medical genetics, PhD in Biology
References
1. Aushev V.N. MikroRNK: malye molekuly s bol'shim znacheniem [MicroRNA: small molecules with great significance]. Klinicheskaya onkogematologiya. Fundamental'nye issledovaniya i klinicheskaya praktika [Clinical oncohematology. Basic research and clinical practice. 2015; 8(1): 1-12 (In Russ.).]
2. Braga E.A., Fridman M.V., Kushlinsky N.E. Molekulyarnye mekhanizmy v metastazirovanii raka yaichnikov: klyuchevye geny i regulyatornye mikroRNK [Molecular mechanisms in ovarian cancer metastasis: key genes and regulatory microRNAs]. Biohimiya [Biochemistry. 2017; 82 (5): 717-731 (In Russ.).]
3. Gershtein E.S. [et al.]. Klinicheskie perspektivy issledovaniya mikroRNK pri rake yaichnikov [Clinical prospects for the study of microRNAs in ovarian cancer]. Onkoginekologiya [Oncogynecology. 2016; 3:4-16 (In Russ.).]
4. Kushlinsky N.E. [et al.]. Klinicheskaya znachimost' metilirovaniya gruppy genov mikro-rnk u bol'nyh rakom yaichnikov [Clinical significance of methylation of a group of microRNA genes in patients with ovarian cancer]. Klinicheskaya laboratornaya diagnostika [Clinical laboratory diagnostics. 2020; 65 (5): 321-327 (In Russ.).] DOI: http://dx.doi.org/10.18821/0869-2084-2020-65-5321-327
5. Loginov V.I. [et al.] Metilirovanie genov mikroRNK i onkogenez (obzor) [Methylation of microRNA genes and oncogenesis (review)]. Biohimiya [Biochemistry. 2015; 80(2): 184-203 (In Russ.).]
6. Agostini A. [et al.] The microRNA miR192/215 family is upregulated in mucinous ovarian carcinomas. Scientific reports. 2018; 8(1): 11069.
7. Bendoraite A. [et al.] Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecologic oncology. 2010; 116(1): 117-125. doi: 10.1016/j. ygyno.2009.08.009
8. Biamonte F. [et al.] MicroRNA let-7g acts as a tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Scientific reports. 2019; 9 (1): 5668. DOI https://doi.org/10.1038/s41598-019-42221-x
9. Braga E.A. [et al.] Five hypermethylated microRNA genes as potential markers of ovarian cancer. Bulletin of Experimental Biology and Medicine. 2018; 164: 351-355.
10. Brozovic A. [et al.] The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells. Molecular oncology. 2015; 9(8): 1678-1693. doi: 10.1016/j.molonc.2015.04.015
11. Calin G.A. [et al.] Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002; 99: 15524-15529.
12. Chen S. [et al.]. MicroRNA 490-3P enhances the drug-resistance of human ovarian cancer cells. Journal of ovarian research. 2014; 7(1): 1-6.
13. Chen S. [et al.] MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug design, development and therapy. 2015: 5225-5235. doi: 10.2147/DDDT. S87526
14. Chen W. [et al.] MicroRNA-137 downregulates MCL1 in ovarian cancer cells and mediates cisplatin-induced apoptosis. Pharmacogenomics. 2020; 21(3): 195-207. doi: 10.2217/pgs-20190122.
15. Chen Z. [et al.] Serum miR-125b levels associated with epithelial ovarian cancer (EOC) development and treatment responses. Bioengineered. 2020; 11(1): 311-317. doi: 10.1080/21655979.2020.1736755
16. Cheng W. [et al.] MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. The FEBS journal. 2012; 279 (11): 20472059.
17. Choi P.W. [et al.] Characterization of miR200 family members as blood biomarkers for human and laying hen ovarian cancer. Scientific reports. 2020; 10(1): 20071. doi: 10.1038/s41598020-77068-0
18. Forterre A. [et al.] A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers. 2020; 12 (7): 1852. doi: 10.3390/ cancers12071852
19. Ghafouri-Fard S., Shoorei H., Taheri M. miRNA profile in ovarian cancer // Experimental and molecular pathology. 2020; 113: 104381. DOI: 10.1016/j.yexmp.2020.104381
20. Global Cancer Observatory [Electronic resource] URL: https://gco.iarc.fr/ (access date: 10/08/2023)
21. Hu Y. [et al.] Oncogene miR-934 promotes ovarian cancer cell proliferation and inhibits cell apoptosis through targeting BRMS1L. European Review for Medical & Pharmacological Sciences. 2019; 23 (13).
22. Ibrahim F.F. [et al.] MicroRNA-200c and microRNA-31 regulate proliferation, colony formation, migration and invasion in serous ovarian cancer. Journal of ovarian research. 2015; 8(1): 1-14. doi: 10.1186/s13048-015-0186-7
23. Iorio M. V., Croce C. M. MicroRNAs in cancer: small molecules with a huge impact // Journal of clinical oncology. 2009; 27(34): 5848. doi: 10.1200/JCO.2009.24.0317
24. Jia Y. [et al.] MicroRNA-34 suppresses proliferation of human ovarian cancer cells by triggering autophagy and apoptosis and inhibits cell invasion by targeting Notch 1. Biochimie. 2019; 160:193-199.
25. Kazmierczak D. [et al.] The significance of MicroRNAs expression in regulation of extracellular matrix and other drug resistant genes in drug resistant ovarian cancer cell lines. International Journal of Molecular Sciences. 2020; 21(7): 2619.
26. Kong F. [et al.] MiR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1. Journal of Huazhong University of Science and Technology [Medical Sciences]. 2011; 31:543-549.
27. Kovač M. P. [et al.] MiRNA-mRNA integrative analysis reveals epigenetically regulated and prognostic miR-103a with a role in migration and invasion of carboplatin-resistant ovarian cancer cells that acquired mesenchymal-like phenotype/ //Biomedicine & Pharmacotherapy. 2023; 166: 115349. doi: 10.1016/j.biopha.2023.115349
28. Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5): 843-854.
29. Li J., Shao W., Feng H. MiR-542-3p, a microRNA targeting CDK14, suppresses cell proliferation, invasiveness, and tumorigenesis of epithelial ovarian cancer. Biomedicine & Pharmacotherapy. 2019;110: 850-856.
30. Li N. [et al.] MiR-130a and MiR-374a function as novel regulators of cisplatin resistance in human ovarian cancer A2780 cells. PloS one. 2015; 10(6): e0128886.
31. Li X. et al. MicroRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. British journal of cancer. 2017; 116 (1): 6676. doi: 10.1038/bjc.2016.379
32. Li X. et al. MiR-142-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes. Biochemical pharmacology. 2019; 161:98-112.
33. Liu J. [et al.] MiR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. Oncology Letters. 2019; 17 (2): 1453-1460. doi: 10.3892/ol.2018.9745.
34. Liu J., Chen W., Zhang H., Liu T., Zhao L. MiR-214 targets the PTEN-mediated PI3K/Akt signaling pathway and regulates cell proliferation and apoptosis in ovarian cancer. Oncology letters. 2017; 14: 5711–5718. doi: 10.3892/ol.2017.6953
35. Liu Y. [et al.] MiR-214 suppressed ovarian cancer and negatively regulated semaphorin 4D. Tumor Biology. 2016; 37: 8239-8248. doi: 10.1007/s13277-015-4708-0
36. Loginov V.I. [et al.] Aberrant methylation of 20 miRNA genes specifically involved in various steps of ovarian carcinoma spread: from primary tumors to peritoneal macroscopic metastases. International Journal of Molecular Sciences. 2022; 23 (3): 1300. DOI: 10.3390/ijms23031300
37. Lu L. [et al.] MicroRNA let-7a: a potential marker for selection of paclitaxel in ovarian cancer management. Gynecologic oncology. 2011; 122 (2): 366-371. doi: 10.1016/j.ygyno.2011.04.033
38. O’Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology. 2018; 9: 402. DOI: 10.3389/fendo.2018.00402
39. Parayath N. N. [et al.] Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer. Cancer letters. 2019; 461: 1-9. doi: 10.1016/j.canlet.2019.07.002
40. Prislei S. [et al.] MiR-200c and HuR in ovarian cancer. BMC cancer. 2013; 13: 1-14.
41. Sun K. X. [et al.] MicroRNA-186 induces sensitivity of ovarian cancer cells to paclitaxel and cisplatin by targeting ABCB1. Journal of ovarian research. 2015;8: 1-7.
42. Tian J. [et al.] MiR-490-3p sensitizes ovarian cancer cells to cisplatin by directly targeting ABCC2. American journal of translational research. 2017; 9 (3): 1127.
43. Van Jaarsveld M. T. M. [et al.] MiR-141 regulates KEAP1 and modulates cisplatin sensitivity in ovarian cancer cells. Oncogene. 2013; 32 (36): 4284-4293. doi: 10.1038/onc.2012.433
44. Vera O. [et al.] DNA methylation of miR7 is a mechanism involved in platinum response through MAFG overexpression in cancer cells. Theranostics. 2017; 7 (17): 4118. doi: 10.7150/ thno.20112.
45. Vilming Elgaaen B. [et al.] Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker. BMC cancer. 2014; 14 (1): 1-13.
46. Vinogradov S., Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine. 2012; 7 (4): 597-615.
47. Vogt M. [et al.] Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv. 2011; 458:313-322.
48. Wang X. [et al.] A novel targeted co-delivery nanosystem for enhanced ovarian cancer treatment via multidrug resistance reversion and mTOR-mediated signaling pathway. Journal of Nanobiotechnology. 2021; 19 (1): 1-18. doi: 10.1186/s12951-021-01139-1
49. Wang Z. [et al.] Integrated microarray meta-analysis identifies miRNA-27a as an oncogene in ovarian cancer by inhibiting FOXO1. Life sciences. 2018; 210: 263-270. https://doi.org/10.1016/j.lfs.2018.08.043
50. Wanjia T. [et al.] Extracellular vesicles in ovarian cancer chemoresistance, metastasis, and immune evasion. Cell Death and Disease. 2022; 13 (1). DOI: 10.1038/s41419-022-04510-8
51. Wu D. [et al.] MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1. Tumor Biology. 2016; 37: 10499-10506.
52. Xie W. [et al.] Ovarian cancer: epigenetics, drug resistance, and progression. Cancer cell international. 2021; 21: 1-16. doi: 10.1186/s12935021-02136-y
53. Yang L. [et al.] Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncology reports. 2012; 28 (2): 592-600. doi: 10.3892/or.2012.1823
54. Yang N. [et al.] MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer research. 2008; 68 (24): 10307-10314. doi: 10.1158/0008-5472.CAN-08-1954
55. Zhang B. [et al.] High expression of microRNA-200a/b indicates potential diagnostic and prognostic biomarkers in epithelial ovarian cancer. Disease Markers. 2022. doi: 10.1155/2022/2751696
56. Zhang X. [et al.] Downregulation of miR130a contributes to cisplatin resistance in ovarian cancer cells by targeting X-linked inhibitor of apoptosis (XIAP) directly. Acta Biochim Biophys Sin. 2013; 45 (12): 995-1001.
57. Zhao C., Sun X., Li L. Biogenesis and function of extracellular miRNAs. ExRNA. 2019; 1(1): 1-9.
58. Zhao Y., Butler E. B., Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell death & disease. 2013; 4 (3): e532-e532. doi: 10.1038/cddis.2013.60
59. Zong C., Wang J., Shi T. M. MicroRNA 130b enhances drug resistance in human ovarian cancer cells. Tumor Biology. 2014; 35: 1215112156.
60. Zuo Y. [et al.] MiR-34a-5p PD-L1 axis regulates cisplatin chemoresistance of ovarian cancer cells. Neoplasma. 2020; 67 (1): 93-101.
Review
For citations:
Mingazheva E.T., Fedorova Yu.Yu., Nurgalieva A.Kh., Valova Ya.V., Andreeva E.A., Sagitova A.V., Faiskhanova R.R., Sakaeva D.D., Khusnutdinova E.K., Prokofyeva D.S. The role of microRNAs in the pathogenesis of ovarian cancer. Yakut Medical Journal. 2024;(1):81-88. https://doi.org/10.25789/YMJ.2024.85.21