Preview

Yakut Medical Journal

Advanced search

Glycocalyx disorders in critical conditions: pathophysiological and clinical aspects

https://doi.org/10.25789/YMJ.2024.85.20

Abstract

Aim: to evaluate the results of clinical studies devoted to the study of the role of endothelial glycocalyx (GC) in the pathogenesis of critical conditions.

Materials and Methods. Scientific information was searched in domestic (E-Library) and foreign databases (PubMed, Scopus, Oxford University Press, Springer, Web of Science Core Collection). 120 publications were analysed, 42 of them were selected to meet the requirements of the review.

Results. GC is a gel-like polysaccharide-protein layer covering the surface of vascular endothelial cells. GC maintains homeostasis of the vascular network, including controlling vascular permeability and microvascular tone, preventing microvascular thrombosis, and regulating leukocyte adhesion. Endothelial GC damage is a universal link of pathogenesis in various pathological processes. The proposed review considers the structure and functions of GC, its participation in the pathogenesis of such diseases as diabetes mellitus, sepsis, covid-19, poly- trauma, pre-eclampsia, epilepsy and others. A decrease in GC thickness in patients with diabe- tes mellitus has been described. The effect of hyperglycaemia on GC structure has also been noted. In sepsis, GC is damaged by free oxygen radicals, which are released by circulating leukocytes, which in turn triggers a cascade of reactions that lead to systemic oedema, hypovo- laemia with further development of organ and tissue damage. In severe trauma, damage to GC is noted, which is accompanied by the release of syndecan, heparan sulfate, hyaluronic acid into the bloodstream. Preeclampsia is also associated with GC damage, which can be detected by elevation of specific markers. Epilepsy and many other neurological diseases are associated with disruption of the blood-brain barrier, whose dysfunction is associated with GC dysfunction.

Conclusion. Timely diagnosis of GC degradation can improve life prognosis and therapeutic outcomes in critically ill patients.

About the Authors

A. P. Vorobyeva
G.K. Filippsky City Children's Clinical Hospital
Russian Federation

VOROBYEVA Anna Pavlovna – anesthesiologist-resuscitator of the intensive care and intensive care wards



Y. V. Bykov
Stavropol State Medical University
Russian Federation

BYKOV Yuri Vitalievich – PhD, assistant of professor of the Department of Department of Anesthesiology and Intensive care with a course of additional professorial education



V. A. Baturin
Stavropol State Medical University
Russian Federation

BATURIN Vladimir Alexandrovich – MD, Professor, Head of the Department of Clinical Pharmacology, with the course of DPO



A. A. Muravyeva
Stavropol State Medical University
Russian Federation

MURAVYEVA Alla AnatolyevnaPhD, assistant of professor of the Department of Department of Anesthesiology and Intensive care with a course of additional professorial education



V. V. Massorov
Stavropol State Medical University
Russian Federation

MASSOROV Vladislav Viktorovich – resident of the department of Anesthesiology and Intensive care with a course of additional professorial education 



References

1. Vorobyeva A.P., Bykov Yu.V., Baturin V.A. Metody opredeleniya destrukcii glikokaliksa [Methods of determing the destruction of glycocalyx]. Vestnik molodogo uchenogo [Journal of young scientists. 2023; 12:36-40 (In Russ.).]

2. Vorobyeva A.P., Bykov YU.V., Baturin V.A. Rol' endotelial'nogo glikokaliksa v patogeneze zabolevanij [The role of endotelial glycocalyx in the pathogenesis of deseases]. Vestnik molodogo uchenogo [Journal of young scientists. 2023: 12:27-32 (In Russ.).]

3. Gonchar I.V., Balashov S.A.,. Valiev I.A., Melkumyanz A.M. Rol' endotelial'nogo glikokaliksa v mekhanogennoj regulyacii tonusa arterial'nyh sosudov [The role of endothelial glycocalyx in the mechanogenic regulation of arterial vascular tone]. Trudy moskovskogo fiziko-himicheskogo instituta [Proceedings of the Moscow Institute of Physics and Chemistry. 2017; 1: 101–108. (In Russ.).]

4. Ilyina Ya.Yu., Fot E.V., Kuzkov V.V., Kirov M.Yu. Sepsis-inducirovannoe povrezhdenie endotelial'nogo glikokaliksa (obzor literatury) [Sepsis-induced damage of endothelial glycocalyx (literature review)]. Vestnik intensivnoj terapii imeni A.I. Sultanova [A.I. Sultanov Bulletin of intensive care. 2019; 2 (In Russ.).] DOI: 10.21320/1818474X-2019-2-32-39

5. Amengual-Gual M., Ulate-Campos A., Loddenkemper T.. Status epilepticus prevention, ambulatory monitoring, early seizure detection and prediction in at-risk patients // Seizure. 2019. 68. p.31-37. doi: 10.1016/j.seizure.2018.09.013. Epub 2018 Sep 18. PMID: 30391107.

6. Anand D., Ray S., Srivastava L., Bhargava S. Evolution of serum hyaluronan and syndecan levels in prognosis of sepsis patients // Clin Biochem. 2016. 49. p. 76–76. doi:10.1016/j.clinbiochem.2016.02.014

7. Bihari S., Wiersema U., Perry R. Schembri D., Bouchier T., Dixon D., et al. Efficacy and safety of 20% albumin fluid loading in healthy subjects: a comparison of four resuscitation fluids // J kAppl Physiol. 2019. 126. p. 46–60. doi: 10.1152/japplphysiol.01058.2018

8. Carlberg N., Cluver C., Hesse C., Thörn S., Gandley R., Damén T., Bergman L. Circulating concentrations of glycocalyx degradation products in preeclampsia // Front. Physiol. 2022 Sec.Clinicaland Translational Physiology. Vol.13. DOI:10.3389/fphys.2022.1022770

9. Chappell L., Cluver C., Kingdom J., Tong S. Pre-eclampsia. Lancet. Vol.398. p.341–354. doi:10.1016/S0140-6736(20)32335-7

10. Chen W., Ju X., Lu Y., et al. Propofol improved hypoxia-impaired integrity of blood-brain barrier via modulating the expression and phosphorylation of zonula occludens-1. CNS Neurosci Ther. 2019; 25: 704-713

11. Drost C., Rovas A., Kümpers P. Protection and rebuilding of the endothelial glycocalyx in sepsis–Science or fiction? Matrix Biol. Plus. 2021;12:100091

12. Fraser D., Patterson E., Daley M., Cepinskas G. Case report: inflammation and endothelial injury profiling of COVID-19 pediatric multisystem inflammatory syndrome (MIS-C). Front Pediatr. 2021. DOI: 10.3389/ fped.2021.597926

13. Fraser D., Patterson E., Slessarev M., Gill S., Martin C., Daley M. et al. Endothelial injury and glycocalyx degradation in critically Ill Coronavirus disease 2019 patients: implications for microvascular platelet aggregation. Crit Care Explorat. 2020. DOI: 10.1097/CCE.0000000000000194.

14. Frati-Munari A. Medical significance of endothelial glycocalyx. Arch Cardiol Mex. 2013; 83:03–312. DOI: 10.1016/j.acmx.2013.04.015

15. Gestational hypertension and preeclampsia: ACOG Practice Bulletin, number 222. Obstet. Gynecol. 2020; 135(6):e237-e60.

16. Global Health Estimates 2020: Deaths By Cause, Age, Sex, By Country And By Region, 2000-2019. Geneva, World Health Organization. 2020.

17. Glykys J., Dzhala V., Egawa K., Kahle K., Delpire E., Staley K. Chloride Dysregulation, Seizures and Cerebral Edema: A Relationship with Therapeutic Potential. Trends Neurosci. 2017; 40: 276-294. doi: 10.1016/j.tins.2017.03.006

18. Han H., Mann A., Ekstein D., Eyal S. Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy. AAPS J. 2017; 19: 973-988. doi: 10.1208/s12248-017-0096-2

19. Haymet A., Bartnikowski N., Wood E., Vallely M., McBride A., Yacoub S., Biering S., Harris E., Suen, J., Fraser J. Studying the Endothelial Glycocalyx in vitro: What Is Missing? Front. Cardiovasc. Med. 2021; 8: 280.

20. Hippensteel J., Uchimido R., Tyler P., Burke R., Han X., Zhang F. et al. Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. Crit. Care 23. 1, 259. doi:10.1186/s13054-019-2534-2

21. Holcomb J., Tilley B., Baraniuk S., Fox E., Wade C., Podbielski J., [et al.].Transfusion Of Plasma, Platelets, And Red Blood Cells In A 1:1:1 vs A 1:1:2 Ratio And Mortality In Patients With Severe Trauma: The PROPPR Randomized Clinical Trial. JAMA. 2015; 313: 471-482

22. Kalagara T., Moutsis T., Yang Y., Pappelbaum K., Farken A., Cladder-Micus L., Vidal-Y-Sy S., John A., Bauer A.T., Moerschbacher B.M., [et al.] The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood Adv. 2018; 2: 2347–2357

23. Karamysheva A. Mechanisms of angiogenesis. Biochemistry. 2008; 73:751–762.

24. Kuessel L., Husslein H., Montanari E., Kundi M., Himmler G., Binder J., [et al.]. Dynamics of soluble syndecan-1 in maternal serum during and after pregnancies complicated by preeclampsia: A nested case control study. Clin. Chem. Lab. Med. 58: 50–58. doi:10.1515/cclm2019-0686

25. Li X., Zhu J., Liu K., Hu Y., Huang K., Pan S. Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice. Experimental Neurology. 2020; 330.

26. Moore E., Moore H., Kornblith L., Neal M., Hoffman M., Mutch N., et al. Trauma-induced coagulopathy. Nat Rev Dis Primers. 2021;7:1–23. doi: 10.1038/s41572-021-00264-3

27. Naumann D., Hazeldine J., Davies D., Bishop J., Midwinter M., Belli A., Endotheliopathy Of Trauma Is An On-Scene Phenomenon, And Is Associated With Multiple Organ Dysfunction Syndrome: A Prospective Observational. StudyShock. 2018; 49: 420-428

28. Naumann D., Hazeldine J., Midwinter M., Hutchings S., Harrison P. Poor microcirculatory flow dynamics are associated with endothelial cell damage and glycocalyx shedding after traumatic hemorrhagic shock. J Trauma Acute Care Surg. 2018; 84:8. DOI: 10.1097/ TA.0000000000001695

29. Nelson A., Berkestedt I., Bodelsson M. Circulating glycosaminoglycan species in septic shock. Acta Anaesth Scand. 2014; 58: 36–43. DOI: 10.1111/aas.12223

30. Ostrowski S., Windeløv N. Ibsen M., Haase N., Perner A, Johansson P. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: a prospective study. J Crit Care. 2013; 28:1–11. doi: 10.1016/j.jcrc.2012.09.003

31. Patterson E., Cepinskas G., Fraser D. Endothelial Glycocalyx Degradation in Critical Illness and Injury. Sec. Intensive Care Medicine and Anesthesiology. 2022 9. DOI: 10.3389/ fmed.2022.898592

32. Perucci L., Corrêa M., Dusse L., Gomes K., Sousa L. Resolution of inflammation pathways in preeclampsia-a narrative review. Immunol. Res. 2017:65:774–789.

33. Piotti A., Novelli D., Meessen JMTA, Ferlicca D., Coppolecchia S., Marino A., [et al.]. Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Crit Care. 2021. 25:113. DOI 10.1186/s13054-021-03545-1

34. Polites S., Moody S., Williams R., Kayton M., Alberto E., Burd R., [et al.]. Timing And Volume Of Crystalloid And Blood Products In Pediatric Trauma: An Eastern Association For The Surgery Of Trauma Multicenter Prospective Observational Study. Trauma Acute Care Surg. 2020; 82:36-42

35. Queisser K., Mellema R., Middleton E., Portier I., Manne B., Denorme F. [et al.]. COVID-19 generates hyaluronan fragments that directly induce endothelial barrier dysfunction. JCI Insight. 2021; 6:e147472. DOI: 10.1172/jci. insight.147472

36. Rapkiewicz A., Mai X., Carsons S., Pittaluga S., Kleiner D., Berger J. et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. EClinicalMedicine. 2020; 24:100434. DOI: 10.1016/j.eclinm.2020.100434

37. Rovas A., Osiaevi I., Buscher K., Sackarnd J., Tepasse P-R, Fobker M, et al. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis. 2021; 24:145–57. DOI: 10.1007/ s10456-020-09753-7

38. Singer M., Deutschman C., Seymour C., Shankar-Hari M., Annane D., Bauer M., [et al.]. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016 315:801–10. DOI: 10.1001/ jama.2016.0287

39. Tomimatsu T., Mimura K., Matsuzaki S., Endo M., Kumasawa K., Kimura T. (2019). Preeclampsia: Maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. Int. J. Mol. Sci. 2022; (17): E4246. doi:10.3390/ ijms20174246

40. Uchimido R., Schmidt E.P., Shapiro N.I. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit. Care. 2019; 23:16. DOI: 10.1186/s13054-018-2292-6

41. Weissgerber T., Garcia-Valencia O., Milic N., Codsi E., Cubro H., Nath M. C., et al. Early onset preeclampsia is associated with glycocalyx degradation and reduced microvascular perfusion. J. Am. Heart Assoc. 2019; 8: e010647. doi:10.1161/JAHA.118.010647

42. Yang T., Guo R., Zhang F. Brain perivascular macrophages: Recent advances and implications in health and diseases. CNS Neurosci Ther. 2019; 25:318-1328.

43. Zhang D., Li L., Chen Y., Ma J., Yang Y., Aodeng S., et al. Syndecan-1, an indicator of endothelial glycocalyx degradation, predicts outcome of patients admitted to an ICU with COVID-19. Mol Med. 2021. 27:151. doi: 10.1186/ s10020-021-00412-1


Review

For citations:


Vorobyeva A.P., Bykov Y.V., Baturin V.A., Muravyeva A.A., Massorov V.V. Glycocalyx disorders in critical conditions: pathophysiological and clinical aspects. Yakut Medical Journal. 2024;(1):77-81. https://doi.org/10.25789/YMJ.2024.85.20

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)