The influence of herpes family viruses on the course of novel coronavirus infection
https://doi.org/10.25789/YMJ.2022.80.20
Abstract
We have analyzed the impact of herpes virus infection on the course of a new coronavirus infection (NCVI). Infection of the examined contingent with herpes family viruses reached 95.3-100%. An association of NCVI with herpes simplex viruses 1, 2 types (HSV 1, 2 types) was found, but no correlation was found between the positivity coefficient (CP) of HSV 1, type 2 and the severity of NCVI. This can be explained by the fact that the sampling was carried out in the remote period after the transferred NKVI. Considering that both herpes viruses and the SARS-CoV-2 virus cause multiple organ damage and can aggravate each other, the study of co-infection seems to be very relevant.
About the Authors
T. E. PopovaRussian Federation
Popova Tatiana Egorovna – MD, Deputy director,
E. D. Okhlopkova
Russian Federation
Okhlopkova Elena Dmitrievna – PhD in Biology, senior researcher
A. A. Tappakhov
Russian Federation
Tappakhov Alexey Alekseevich – PhD in Medicine, Associate Professor of the Medical Institute
S. D. Efremova
Russian Federation
Efremova Svetlana Dmitrievna – junior researcher
M. A. Varlamova
Russian Federation
Varlamova Marina Alekseevna – researcher,
A. N. Romanova
Russian Federation
Romanova Anna Nikolaevna– MD, Director
References
1. Samsygina G.A. Gerpes-virusnye infekcii u detej [Herpes virus infections in children]. Consilium Medicum. Pediatriya (App.). 2016; 2:18–23.
2. Abate G., Memo M., Uberti D. Impact of COVID-19 on Alzheimer's Disease Risk: Viewpoint for Research Action. (Basel, Switzerland). 2020; 8(3):286. doi 10.3390/healthcare8030286.
3. Medha K, Beeraka NM., Uthaiah CA, et al. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol. 2021. 58(9). Р. 4535–4563. doi: 10.1007/s12035-021-02399-6
4. Grant-Kels JM, Sloan B, Kantor J, Elston DM.Big data and cutaneous manifestations of COVID-19. J Am Acad Dermatol. 2020. 83(2). Р. 365–366. doi: 10.1016/j.jaad.2020.04.050.
5. – Cannon MJ, Grosse SD, Fowler KB. Cytomegaloviruses from Molecular Pathogenesis to Intervention. The Epidemiology and Public Health Impact of Congenital Cytomegalovirus Infection. Caister Academic Press. London, UK: 2013: 26–43.
6. Carod-Artal FJ. Neurological complications of coronavirus and COVID-19. Rev Neurol. 2020; 70(9): 311–322. doi: 10.33588/rn.7009.2020179.
7. Plüß M, Mese K, Kowallick JT, Schuster A. CaseReport: Cytomegalovirus Reactivation and Pericarditis Following ChAdOx1 nCoV-19 Vaccination Against SARS-CoV-2. Front Immunol. 2021; 12: 784145. doi: 10.3389/fimmu.2021.784145
8. Christensen MH, Paludan SR. Viral evasion of DNA-stimulated innate immune responses. Cell Mol Immunol. 2017; 14(1): 4–13. doi: 10.1038/cmi.2016.06
9. Weber S, Kehl V. CMV seropositivity is a potential novel risk factor for severe COVID-19 in non-geriatric patients. PLoS One. 2022. 17(5). e0268530. doi: 10.1371/journal.pone.0268530
10. Zach H, Dirkx MF, Pasman JW, et al. Cognitive stress reduces the effect of levodopa on Parkinson’s resting tremor. CNS Neurosci Ther. 2017; 23(3): 209–215. doi: 10.1111/cns.12670
11. Xu R, Zhou Y, Cai L, et al. Co-reactivation of human herpesvirus alpha subfamily (HSV I and VZV) in critically ill patient with COVID-19. Br J Dermatol. 2020: 183(6): 1145–1147. doi: 10.1111/ bjd.19484.
12. Parsons T, Banks S, Bae C, et al. COVID-19-associated acute disseminated encephalomyelitis (ADEM). J Neurol. 2020; 267: 2799–2802. doi: 10.1007/s00415-020-09951-9
13. Lunn MP, Cornblath DR, Jacobs BC, et al. COVID-19 vaccine and Guillain-Barré syndrome: let’s not leap to associations. Brain. 2021; 144(2): 357–360. doi: 10.1093/brain/awaa444.
14. Geisen WR, Berger J, Schwartz C, et al. Cytomegalovirus Enterocolitis Secondary to Experimental COVID-19. Therapy. IDCases. 2020. 22. e00962. doi: 10.1016/j.idcr.2020.e0096
15. Krstanović F, Britt WJ., Jonjić S, Brizić I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses. 2021; 13(6): 1078. doi: 10.3390/v13061078
16. Paolucci S, Cassaniti I, Novazzi F, et al. EBV DNA Increase in COVID-19 Patients With Impaired Lymphocyte Subpopulation Count. Int J Infect Dis. 2021; 104: 315–319. doi: 10.1016/j.ijid.2020.12.051
17. McHugh D, Myburgh R, Caduff N, et al. EBV renders B cells susceptible to HIV-1 in humanized mice. Life Sci Alliance. 2020. 3(8). e202000640. doi: 10.26508/lsa.202000640
18. Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J. Pathol. 2015. 235. Р. 288–297. doi: 10.1002/path.4437
19. Le Balc'h P, Pinceaux K, Pronier C, et al. Herpes Simplex Virus and Cytomegalovirus Reactivations Among Severe COVID-19 Patients. Crit Care. 2020; 24(1): 530. doi: 10.1186/s13054020-03252-3
20. James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020; 98(5): 315–329. doi: 10.2471/BLT.19.237149
21. Saati A, Al-Husayni F, Malibari AA, et al. Herpes Zoster Co-Infection in an Immunocompetent Patient With COVID-19. Cureus. 2020. 12(7). e8998. doi: 10.7759/cureus.8998
22. Houen G, Hartwig NT. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol. 2020. 11.587380. doi: 10.3389/fimmu.2020.587380
23. Itzhaki Ruth F. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer’s Disease (AD); Underwhelming Evidence against. Vaccines (Basel). 2021; 9(6): 679. doi: 10.3390/vaccines9060679
24. Katz J, Yue S, Xue W. Herpes simplex and herpes zoster viruses in COVID-19 patients. Ir J Med Sci. 2022; 191(3): 1093–1097. doi: 10.1007/s11845-021-02714-z
25. Liu Y-Z, Wang Y-X, Jiang C-L. Inflammation: the common pathway of stress-related diseases. Front Hum Neurosci. 2017; 11: 316. doi: 10.3389/fnhum.2017.00316.
26. Luzuriaga K, Sullivan JL. Infectious mononucleosis. New Engl J Med. 2010; 362: 1993– 2000. doi: 10.1056/NEJMcp1001116.
27. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–690. doi: 10.1001/jamaneurol.2020.1127
28. Pyne J D., Brickman AM. The Impact of the COVID-19 Pandemic on Dementia Risk: Potential Pathways to Cognitive Decline. Neurodegener Dis. 2021. 1. Р. 23. doi: 10.1159/000518581
29. Schulz KS, Mossman KL. Viral evasion strategies in type I IFN signaling – a summary of recent developments. Front Immunol. 2016; 7: 498.doi: 10.3389/fimmu.2016.00498
30. Two Years into the COVID-19 Pandemic: Lessons Learned. Ribeiro da Silva SJ, Frutuoso do Nascimento JC, Germano Mendes RP, et al. ACS Infect Dis. 2022; 8(9): 1758–1814. doi: 10.1021/acsinfecdis.2c00204
31. Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020; 88: 945–946. doi: 10.1016/j.bbi.2020.04.017
32. Zhang SY. Herpes simplex virus encephalitis of childhood: inborn errors of central nervous system cell-intrinsic immunity. Hum Genet. 2020; 139(6–7): 911–918. doi: 10.1007/s00439-02002127-5
33. Zhu S, Viejo-Borbolla A. Pathogenesis and virulence of herpes simplex virus. Virulence. 2021; 12(1): 2670–2702. doi: 10.1080/21505594.2021.1982373
34. https://covid19.who.int/
Review
For citations:
Popova T.E., Okhlopkova E.D., Tappakhov A.A., Efremova S.D., Varlamova M.A., Romanova A.N. The influence of herpes family viruses on the course of novel coronavirus infection. Yakut Medical Journal. 2022;(4):75-79. https://doi.org/10.25789/YMJ.2022.80.20