Preview

Якутский медицинский журнал

Расширенный поиск

Перспективные природные соединения как возможные средства профилактики и лечения новой коронавирусной инфекции, вызванной вирусом SARS-CoV-2

https://doi.org/10.25789/YMJ.2020.71.25

Аннотация

В обзоре литературы представлен накопленный научный опыт многих исследователей, занимавшихся поиском метаболитов растительного происхождения, обладающих потенциальным действием против SARS-CoV-2. В отличие от синтетических лекарственных веществ, растительные противовирусные препараты не требуют трудоемкого фармацевтического синтеза и являются более доступными и относительно безопасными. В данной работе проведен поиск перспективных природных соединений как возможных средств профилактики и лечения новой коронавирусной инфекции, вызванной вирусом SARS-CoV-2.

Об авторах

В. М. Николаев
ЯНЦ КМП
Россия

Николаев Вячеслав Михайлович – к.б.н., гл.н.с.–руковод. отдела



Н. К. Чирикова
Ин-та естественных наук СВФУ им. М.К. Аммосова
Россия

Чирикова Надежда Константиновна – д.фарм.н., проф.



С. И. Софронова
ЯНЦ КМП
Россия

Софронова Саргылана Ивановна – к.м.н., гл.н.с.– руковод. отдела



Е. К. Румянцев
ЯНЦ КМП
Россия

Румянцев Егор Константинович – м.н.с.



А. Г. Васильева
СВФУ им. М.К. Аммосова
Россия

Васильева Айна Григорьевна – студент ИЕН 



А. Н. Романова
ЯНЦ КМП
Россия

Романова Анна Николаевна – д.м.н, директор



Список литературы

1. Кузнецова Л.В. Конспект флоры Якутии: Сосудистые растения / Л.В. Кузнецова, В.И. Захарова - Новосибирск: Наука. - 2012. - 272 с.

2. Макаров А.А. Лекарственные растения Якутии и перспективы их освоения / А.А. Макаров. - Новосибирск: Изд-во Сибирского отделения РАН, 2002. - С. 264.

3. Макаров A.A. Биологически активные вещества в растениях Якутии / А.А. Макаров. - Якутск: ЯНЦ СО АН СССР, 1989. - С. 156.

4. Макаров A.A. Методы поисков и изучения лекарственных растений / А.А. Макаров. - Якутск: Якут. кн. изд-во, 1981. - С. 66.

5. Павловская Н.Е. Функциональная роль лектинов растений как предпосылка для применения в биотехнологии / Н.Е. Павловская, И.Н. Гагарина //Химия растительного сырья. -2017. - №1. – С. 21-35.

6. Самарин В.П. О суммарном содержании алкалоидов в некоторых растениях Якутии. Проблемы современной ботаники / В.П. Самарин. - М.: Наука, 1965. - Т.2. - С. 200-205.

7. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A. et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening [published online ahead of print, 2020 Jul 31]. Int J Biol Macromol. 2020;S0141-8130(20)33997-0. doi: 10.1016/j.ijbiomac.2020.07.235

8. Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020;14(4):407-412. doi:10.1016/j.dsx.2020.04.020

9. Bouchentouf S., Missoum N. Identification of Compounds from Nigella Sativa as New Potential Inhibitors of 2019 Novel Coronasvirus (Covid-19): Molecular Docking Study. 2020

10. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787- 1799. doi:10.1056/NEJMoa2001282

11. Cao P, Wu S, Wu T, et al. The important role of polysaccharides from a traditional Chinese medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic. Carbohydr Polym. 2020;240:116346. doi: 10.1016/j.carbpol.2020.116346

12. Chen L, Li J, Luo C, et al. Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL (pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem. 2006;14(24):8295-8306. doi:10.1016/j.bmc.2006.09.014

13. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-1100. doi:10.1093/cvr/cvaa078

14. Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARSCoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem. 2013;21(11):3051-3057. doi:10.1016/j.bmc.2013.03.027

15. de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64:165-230. doi:10.1016/S0065-3527(05)64006-7

16. de Oliveira PG, Termini L, Durigon EL, Lepique AP, Sposito AC, Boccardo E. Diacerein: A potential multi-target therapeutic drug for COVID-19. Med Hypotheses. 2020;144:109920. doi:10.1016/j.mehy.2020.109920

17. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-534. doi:10.1038/nrmicro.2016.81

18. Ding Y, Chen L, Wu W, Yang J, Yang Z, Liu S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes Infect. 2017;19(12):605-615. doi:10.1016/j.micinf.2017.08.009

19. Enmozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach [published online ahead of print, 2020 May 5]. J Biomol Struct Dyn. 2020;1-7. doi:10.10 80/07391102.2020.1760136

20. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020; 127:104362. doi: 10.1016/j.jcv.2020.104362

21. Gorbalenya A.E., Baker S.C., Baric R.S. et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019- nCoV and naming it SARS-CoV-2. Nat. Microbiol. 02.03.2020. DOI:10.1038/s41564-020-0695-z.

22. Gupta PC, Kumar MP, Ram J. COVID-19 pandemic from an ophthalmology point of view. Indian J Med Res. 2020;151(5):411-418. doi:10.4103/ijmr.IJMR_1369_20

23. Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med. 1966;121(1):190-193. doi:10.3181/00379727-121-30734

24. Hilgenfeld R, Anand K, Mesters JR, et al. Structure and dynamics of SARS coronavirus main proteinase (Mpro). Adv Exp Med Biol. 2006;581:585-591. doi:10.1007/978-0-387- 33012-9_106

25. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007;74(2):92-101. doi:10.1016/j.antiviral.2006.04.014

26. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784. e5. doi:10.1016/j.molcel.2020.04.022

27. Hoffmann M., Kleine-Weber H.,Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. pii: S0092-8674(20)30229-4. DOI:10.1016/j.cell.2020.02.052.

28. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102(22):7988- 7993. doi:10.1073/pnas.0409465102

29. Iftikhar H, Ali HN, Farooq S, Naveed H, Shahzad-Ul-Hussan S. Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach. Comput Biol Med. 2020;122:103848. doi:10.1016/j.compbiomed.2020.103848

30. Jahan I, Onay A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk J Biol. 2020;44(3):228-241. Published 2020 Jun 21. doi:10.3906/biy-2005-114

31. Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;10.1038/s41586-020-2223-y. doi:10.1038/s41586-020-2223-y

32. Kadil Y, Mouhcine M, Filali H. In Silico Investigation of the SARS CoV2 Protease with Thymoquinone Major Constituent of Nigella Sativa. Curr Drug Discov Technol. 2020;10.2174/15701 63817666200712164406. doi:10.2174/1570163817666200712164406

33. Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem. 2014;29(1):59-63. doi:10.3109/14756366.2012.7 53591

34. King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J. Order — Nidovirales. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. 2012. 784–794. DOI:10.1016/B978-0-12-384684- 6.00066-5.

35. Kishore V, Yarla NS, Bishayee A, et al. Multi-targeting Andrographolide and its Natural Analogs as Potential Therapeutic Agents. Curr Top Med Chem. 2017;17(8):845-857. doi:10.2174/1568026616666160927150452


Рецензия

Для цитирования:


Николаев В.М., Чирикова Н.К., Софронова С.И., Румянцев Е.К., Васильева А.Г., Романова А.Н. Перспективные природные соединения как возможные средства профилактики и лечения новой коронавирусной инфекции, вызванной вирусом SARS-CoV-2. Якутский медицинский журнал. 2020;(3):95-101. https://doi.org/10.25789/YMJ.2020.71.25

For citation:


Nikolaev V.M., Chirikova N.K., Sofronova S.I., Rumyancev E.K., Vasileva A.G., Romanova A.N. Promising natural compounds as possible means of prevention and treatment of the novel coronavirus infection caused by the SARS-CoV-2 virus. Yakut Medical Journal. 2020;(3):95-101. (In Russ.) https://doi.org/10.25789/YMJ.2020.71.25

Просмотров: 4


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)