Preview

Yakut Medical Journal

Advanced search

Serum biomarkers in different types of pulmonary fibrosis

https://doi.org/10.25789/YMJ.2023.84.06

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease of unknown origin with an average life expectancy of 3-5 years after diagnosis. The disease is accompanied by progressive pulmonary fibrosis, decreased lung function, poor response to therapy and early mortality. Various biomarkers, including serum biomarkers, are used for timely and differential diagnosis of idiopathic pulmonary fibrosis (IPF) and COVID-19-associated pulmonary fibrosis (PF), predicting the course of the disease and assessing the effectiveness of specific therapy. Target was to investigate the features of pulmonary fibrosis based on serum biomarkers in patients with ILF and COVID-19-associated fibrosis. Methods. Changes in serum concentrations of biomarkers CA15-3, LOXL2, TGFBR3 and periostin in patients with ILF (n=10), COVID-19-associated pulmonary fibrosis and controls were investigated. Results. Significant differences were found between LOXL2 concentrations in the control and ILF groups (p=0.003), ILF and COVID-19-associated fibrosis groups (p=0.036) and between periostin concentrations in the control and ILF groups (p=0.042). ROC analysis for LOXL2 revealed: in the ILF and control groups AUC=0.854 (95% CI 0.693-1.0; p<0.0001), with a sensitivity of 80.0% and specificity of 76.9%; in the ILF and COVID-19-associated LF groups AUC=0.773 (95% CI 0.556-0.989; p=0.014) with a sensitivity of 99.0% and specificity of 63.6%. For periostin: AUC=0.692 (95% CI 0.469-0.916; p=0.092) with a sensitivity of 50.0% and specificity of 84.6%. Correlation analysis in the pooled group showed a significant correlation for CA15-3 and periostin (rs=0.383; 95% CI 0.042-0.645; p=0.025), LOXL2 and periostin (rs=0.509; 95% CI 0.196-0.727; p=0.002), TGFBR3 and CA15-3 (rs=0.347; 95% CI 0.0-0.62; p=0.044). Conclusions. We found significant differences between serum levels of LOXL2 in ILF group and CG, ILF group and COVID-19-associated LF. ROC analysis yielded the values of the optimal points of group separation by serum LOXL2 and periostin levels. This allows differential diagnosis of different pulmonary fibrosis.

About the Authors

R. Kh. Zulkarneev
Bashkir State Medical University
Russian Federation

 Zulkarneev  Rustem Khalitovich – PhD in Medicine, Professor, Department of Internal Medicine



Sh. R. Zulkarneev
Bashkir State Medical University
Russian Federation

Zulkarneev Shamil Rustemovich – student



G. F. Korytina
Bashkir State Medical University; Institute of Biochemistry and Genetics
Russian Federation

Korytina Gulnaz Faritovna – PhD in Biological Sciences, Professor, Department of Biology;  Head of Physiological Genetics Laboratory 



I. A. Gibadullin
Bashkir State Medical University
Russian Federation

Gibadullin Irshat Askhatovich – postgraduate student, Department of Hospital Surgery, doctor of the Department of Thoracic Surgery, BSMU Clinic



A. M. Avzaletdinov
Bashkir State Medical University
Russian Federation

Avzaletdinov Artur Marsovich – PhD in Medicine, Professor, Department of Hospital Surgery,  Head of Thoracic Surgery Department, BSMU Clinic



L. S. Kozyreva
Bashkir State Medical University Clinic
Russian Federation

 Kozyreva Lilia Sergeevna – MD in Medicine, Head of Pulmonology Department



A. I. Gimazova
State Novosibirsk Regional Clinical Hospital
Russian Federation

Gimazova Aliya Ilnurovna – doctor, Department of Thoracic Surgery



N. Sh. Zagidullin
Bashkir State Medical University
Russian Federation

Zagidullin  Naufal Shamilevich – PhD in Medicine, Head of the Department of Internal Medicine

 450008, Ufa, Lenina St.



References

1. Anaev E.H. Biomarkers of idiopathic pulmonary fibrosis // Practical Pulmonology. 2016; 4: 24-30.

2. Ability of Periostin as a New Biomarker of Idiopathic Pulmonary Fibrosis / I. Okamoto [et al.] // MPeriostin. 2019: 79–87. DOI:10.1007/978-981-13-6657-4_9

3. Blood Biomarkers in Idiopathic Pulmonary Fibrosis / Guiot J. [et al.] // Lung. 2017; 195(3): 273–280. DOI:10.1007/s00408-017-9993-5

4. Combined detection of CA15-3, CEA, and SF in serum and tissue of canine mammary gland tumor patients / Fan Y. [et al.] // Sci Rep. 2021; 11(1): 6651. DOI: 10.1038/s41598-021-85029-4.

5. Developmental pathways in the pathogenesis of lung fibrosis / Chanda D. [et al.] // Mol. Aspects Med. 2018; 65:56-69. DOI:10.1016/j.mam.2018.08.004

6. Existing and emerging biomarkers for disease progression in idiopathic pulmonary fibrosis / Inchingolo R. [et al.] // Expert Review of Respiratory Medicine. 2018: 1–13. DOI:10.1080/17476348.2019.1553620

7. Genetic and non-genetic risk factors of idiopathic pulmonary fibrosis: A review / Zulkarneev S.R. [et al.] // Global Transl Med. 2022; 1(2): 107. DOI: 10.36922/gtm.v1i2.107

8. Global incidence and prevalence of idiopathic pulmonary fibrosis / Maher T.M. [et al.] // Respir Res. 2021; 22(1): 197. DOI: 10.1186/s12931-021-01791-z.

9. Idiopathic pulmonary fibrosis / Lederer D.J., Martinez F.J., Engl N. // J Med. 2018; 378:1811–1823. DOI:10.1056/NEJMra1705751

10. Inhibition of type III TGF-β receptor aggravates lung fibrotic process / Ahn J.Y. [et al.] // Biomed Pharmacother. 2010; 64(7): 472-6. DOI: 10.1016/j.biopha.2010.01.006.

11. Linking LOXL2 to Cardiac Interstitial Fibrosis / Erasmus M. [et al.] // Int J Mol Sci. 2020. Vol. 21(16). Р. 5913. DOI:10.3390/ijms21165913

12. LOX/LOXL in pulmonary fibrosis: potential therapeutic targets / Chen L. [et al.] // Journal of Drug Targeting. 2018; 1–23. DOI:10.1080/1061186x.2018.1550649

13. LOXL2—A new target in antifibrogenic therapy? / Puente А. [et al.] // Int J Mol Sci. 2019:20(7): 1634. DOI: 10.3390/ijms20071634.

14. Periostin: A Potential Biomarker and Therapeutic Target in Pulmonary Diseases / Alzobaidi N. [et al.] // J Pharm Pharm Sci. 2022; 25:137-148. DOI: 10.18433/jpps32306.

15. Progression to fibrosing diffuse alveolar damage in a series of 30 minimally invasive autopsies with COVID-19 pneumonia in Wuhan / Li Y. [et al.] // China Histopathology. 2021; 78(4): 542–555. DOI:10.1111/his.14249.

16. Proteomics in idiopathic pulmonary fibrosis: the quest for biomarkers / Khan T. [et al.] // Mol. Omics. 2021; 17(1): 43-58. DOI: 10.1039/d0mo00108b.

17. Serum CA 15-3 is increased in pulmonary fibrosis / Ricci A. [et al.] // Sarcoidosis Vasc Diffuse Lung Dis. 2009; 26(1): 54-63.

18. Systematic Review and Metanalysis of Oncomarkers in IPF Patients and Serial Changes of Oncomarkers in a Prospective Italian Real-Life Case Series / d'Alessandro M. [et al.] // Cancers (Basel). 2021; 13(3): 539. DOI: 10.3390/cancers13030539.

19. TGF-β receptors: In and beyond TGF-β signaling / Vander Ark A., Cao J., Li X. // Cellular Signalling. 2018; 52:112–120. DOI: 10.1016/j.cellsig.2018.09.002

20. The usefulness of monomeric periostin as a biomarker for idiopathic pulmonary fibrosis / Ohta S. [et al.] // PLoS. One. 2017; 12(3): e0174547. DOI: 10.1371/journal.pone.0174547


Review

For citations:


Zulkarneev R.Kh., Zulkarneev Sh.R., Korytina G.F., Gibadullin I.A., Avzaletdinov A.M., Kozyreva L.S., Gimazova A.I., Zagidullin N.Sh. Serum biomarkers in different types of pulmonary fibrosis. Yakut Medical Journal. 2023;(4):24-27. https://doi.org/10.25789/YMJ.2023.84.06

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)