Phytochemical analysis and antioxidant properties of plant extracts of the Rosaceae family
https://doi.org/10.25789/YMJ.2024.88.25
Abstract
Oxidative stress is considered as an important pathogenetic link in the development of more than 200 diseases. In this regard, the search for local medicinal plant raw materials with a high content of phenolic compounds with antioxidant activity to inhibit oxidative processes becomes the current task. The article presents data on the content of biologically active compounds and total antioxidant capacity of extracts of Crataegus dahurica, Sanguisorba officinalis, Rosa acicularis. It was shown that among the plants the high content of flavonoids and total phenolic compounds was found in the extracts of R. acicularis, while phenylpropanoids were predominant in the leaves of S. officinalis. High antioxidant capacity was found in leaf extracts of R. acicularis, which correlates with the increased content of phenolic compounds in this plant.
About the Authors
E. V. TomtosovaRussian Federation
E. K. Rumyantsev
Russian Federation
V. M. Nikolaev
Russian Federation
N. K. Chirikova
Russian Federation
References
1. State Pharmacopoeia of the Russian Federation: in 3 volumes. 14th ed. Vol. 1. Moscow: Ministry of Health of the Russian Federation; 2018. 1245 p.
2. State Pharmacopoeia of the Russian Federation: in 4 volumes. 15th ed. Vol. 1. Moscow: Ministry of Health of the Russian Federation; 2020. 980 p.
3. Zverev Ya.F., Bryukhanov V.M. Flavonoids as Promising Natural Antioxidants // Bulletin of Medical Science. 2017. No. 1 (5).
4. Kurdyukov E.E., Vodopyanova O.A., Mitishev A.V. Quantitative Determination Method for Total Phenylpropanoids in Stevia Raw Material // Chemistry of Plant Raw Materials. 2020. No. 3. P. 115–121.
5. Mashkovsky M.D. Medicinal Products. Moscow: 2008. 1206 p.
6. Nikolaeva O.A. Diversity of Rosaceae in Natural Communities within the Territory of the Yakut Botanical Garden // Science and Education. 2017. No. 3.
7. Phenylpropanoids as a Class of Natural Biologically Active Compounds – Organoprotectors / Kurkin V.A., Varina N.R., Avdeeva E.V., Ruzaeva I.V. // Pharmacy and Pharmacology. 2023. Vol. 11. No. 5. P. 399–411. DOI: 10.19163/2307-9266-2023-11-5-399-411.
8. Flora of the USSR. Vol. 30 / Edited by V.L. Komarov and B.K. Shishkin. Moscow; Leningrad: Publishing House of the USSR Academy of Sciences, 1964.
9. Flora of the USSR. Vol. 30 / Edited by V.L. Komarov and B.K. Shishkin. Moscow; Leningrad: Publishing House of the USSR Academy of Sciences, 1964.
10. Chemiluminescent Method for Determining Total Antioxidant Capacity in Medicinal Plant Material / Vladimirov G.K., Sergunova E.V., Izmailov D.Yu., Vladimirov Yu.A. // Vestnik RGMU (Russian State Medical University Bulletin). 2016. No. 2. P. 65–72. DOI: 10.24075/brsmu.2016-02-10.
11. Ahmad A, Kaleem M, Ahmed Z, Shafiq H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections-A review. Food Res Int. 2015;77:221- 235. doi:10.1016/j.foodres.2015.06.021.
12. Alscher RG, Hess JL. Antioxidants in Higher Plants. 1st ed. Boca Raton, FL: CRC Press; 2017:135-171.
13. An L, Zhai Q, Tao K, et al. Quercetin induces itaconic acid-mediated M1/M2 alveolar macrophages polarization in respiratory syncytial virus infection. Phytomedicine. 2024;130:155761. doi:10.1016/j.phymed.2024.155761.
14. Ayazoglu Demir E, Mentese A, Kucuk H, Turkmen Alemdar N, Demir S. p-Coumaric acid alleviates cisplatin-induced ovarian toxicity in rats. J Obstet Gynaecol Res. 2022;48(2):411- 419. doi:10.1111/jog.15119.
15. Cao P, Wang Y, Zhang C, et al. Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. J Nutr Biochem. 2023;120:109414. doi:10.1016/j.jnutbio.2023.109414.
16. Vladimirov GK, Sergunova EV, Izmailov DY, Vladimirov YA. Chemiluminescent Method for Determining Total Antioxidant Capacity in Medicinal Plant Material. Vestnik RGMU. 2016;2:65-72. doi:10.24075/brsmu.2016-02-10.
17. Deng L, Zhou X, Tao G, et al. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res Int. 2022;162(Pt A):111887. doi:10.1016/j.foodres.2022.111887.
18. Derosa G, Maffioli P, D'Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. 2021;35(3):1230- 1236. doi:10.1002/ptr.6887.
19. Fan H, Li Y, Sun M, et al. Hyperoside reduces rotenone-induced neuronal injury by suppressing autophagy. Neurochem Res. 2021;46(12):3149-3158. doi:10.1007/s11064-021-03404-z.
20. Flora of the USSR. Vol. 30 / Edited by Komarov VL, Shishkin BK. Moscow; Leningrad: Publishing House of the USSR Academy of Sciences; 1964.
21. Kuznetsova LV, Zakharova VI, Sosina NK, et al. Flora of Yakutia: Geographical and Ecological Aspects. Novosibirsk: Nauka; 2010. 13 p.
22. García-Sánchez A, Miranda-Díaz AG, Cardona-Muñoz EG. The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxid Med Cell Longev. 2020;2020:2082145. doi:10.1155/2020/2082145.
23. Ghadimi M, Foroughi F, Hashemipour S, et al. Randomized double-blind clinical trial examining the Ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytother Res. 2021;35(2):1023-1032. doi:10.1002/ptr.6867.
24. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909-930. doi:10.1016/j.plaphy.2010.08.016.
25. Hajiluian G, Karegar SJ, Shidfar F, et al. The effects of Ellagic acid supplementation on neurotrophic, inflammation, and oxidative stress factors, and indoleamine 2,3-dioxygenase gene expression in multiple sclerosis patients with mild to moderate depressive symptoms: A randomized, triple-blind, placebo-controlled trial. Phytomedicine. 2023;121:155094. doi:10.1016/j.phymed.2023.155094.
26. Hajimehdipoor H, Shahrestani R, Shekarchi M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res J Pharmacogn. 2014;1:35-40.
27. Hutchinson J. The Genera of Flowering Plants. Vol. 1. Oxford: Oxford University Press; 1964.
28. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med. 2011;32(4-6):234-246. doi:10.1016/j. mam.2011.10.006.
29. Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother. 2018;108:656-662. doi:10.1016/j.biopha.2018.09.058.
30. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42. doi:10.1007/s11883-017-0678-6.
31. Kazemi M, Lalooha F, Nooshabadi MR, et al. Randomized double-blind clinical trial evaluating the Ellagic acid effects on insulin resistance, oxidative stress and sex hormones levels in women with polycystic ovarian syndrome. J Ovarian Res. 2021;14(1):100. doi:10.1186/s13048-021-00849-2.
32. Kurdyukov EE, Vodopyanova OA, Mitishev AV. Quantitative Determination Method for Total Phenylpropanoids in Stevia Raw Material. Chem Plant Raw Mater. 2020;3:115-121.
33. Lachowicz S, Oszmiański J, Rapak A, Ochmian I. Profile and content of phenolic compounds in leaves, flowers, roots, and stalks of Sanguisorba officinalis L. determined with the LC-DAD-ESI-QTOF-MS/MS analysis and their in vitro antioxidant, antidiabetic, antiproliferative potency. Pharmaceuticals. 2020;13(8):191. doi:10.3390/ph13080191.
34. Long T, Wu Q, Wei J, et al. Ferulic acid exerts neuroprotective effects via autophagy induction in C. elegans and cellular models of Parkinson's disease. Oxid Med Cell Longev. 2022;2022:3723567. doi:10.1155/2022/3723567.
35. Mashkovsky MD. Medicinal Products. Moscow; 2008. 1206 p.
36. Mirzaie Z, Bastani A, Hesami S, et al. Improving Effect of Ellagic Acid on Sleep Quality and Gastrointestinal Symptoms in Patient With Irritable Bowel Syndrome: Randomized Double-Blind Clinical Trial. Turk J Gastroenterol. 2021;32(11):937-944. doi:10.5152/tjg.2021.20344.
37. Ni X, Shang FS, Wang TF, et al. Ellagic acid induces apoptosis and autophagy in colon cancer through the AMPK/mTOR pathway. Tissue Cell. 2023;81:102032. doi:10.1016/j.tice.2023.102032.
38. Nikolaeva OA. Diversity of Rosaceae in Natural Communities within the Territory of the Yakut Botanical Garden. Science and Education. 2017;3.
39. Olennikov D, Chemposov VV, Chirikova N. Metabolites of prickly rose: chemodiversity and digestive-enzyme-inhibiting potential of Rosa acicularis and the main ellagitannin rugosin D. Plants. 2021;10(12):12525. doi:10.3390/plants10112525.
40. Oliva MA, Castaldo S, Rotondo R, et al. Inhibiting effect of p-Coumaric acid on U87MG human glioblastoma cell growth. J Chemother. 2022;34(3):173-183. doi:10.1080/112000 9X.2021.1953888.
41. Pérez-Torres I, et al. Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci. 2021;22(4):1786. doi:10.3390/ijms22041786.
42. Kurkin VA, Varina NR, Avdeeva EV, Ruzaeva IV. Phenylpropanoids as a Class of Natural Biologically Active Compounds – Organoprotectors. Pharm Pharmacol. 2023;11(5):399-411. doi:10.19163/2307-9266-2023-11-5-399-411.
43. Potter D, Eriksson T, Evans R, et al. Phylogeny and classification of Rosaceae. Plant Syst Evol. 2007;266(1):5-43. doi:10.1007/s00606-007-0539-9.
44. Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: A concise review. J Food Biochem. 2022;46(10):e14264. doi:10.1111/jfbc.14264.
45. Sagaradze VA, Babaeva E, Ufimov R, Trusov NA, Kalenikova E. Study of the variability of rutin, vitexin, hyperoside, quercetin in "Crataegi folium cum flore" of hawthorn (Crataegus L.) species from Russian flora. J Appl Res Med Aromat Plants. 2019;15:100217. doi:10.1016/j.jarmap.2019.100217.
46. Seo CS, Jeong SJ, Yoo SR, Lee NR, Shin HK. Quantitative analysis and in vitro anti-inflammatory effects of gallic acid, ellagic acid, and quercetin from Radix Sanguisorbae. Pharmacogn Mag. 2016;12(46):104-108. doi:10.4103/0973-1296.177908.
47. Shishmareva T, Shishmarev V, Olennikov D. Phenolic compounds of Sanguisorba officinalis (Rosaceae) growing in Eastern Siberia. Chem Plant Raw Mater. 2021:139-150. doi:10.14258/jcprm.2021018281.
48. Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152-178.
49. Song J, Wang H, Sheng J, et al. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation. Mol Med. 2023;29(1):147. doi:10.1186/s10020-023-00735-1.
50. Song LL, Qu YQ, Tang YP, et al. Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice. Redox Biol. 2023;61:102637. doi:10.1016/j.redox.2023.102637.
51. State Pharmacopoeia of the Russian Federation: in 3 volumes. 14th ed. Vol. 1. Moscow: Ministry of Health of the Russian Federation; 2018. 1245 p. 52. State Pharmacopoeia of the Russian Federation: in 4 volumes. 15th ed. Vol. 1. Moscow: Ministry of Health of the Russian Federation; 2020. 980 p.
52. Teleanu DM, Niculescu AG, Lungu II, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022;23(11):5938. doi:10.3390/ijms23115938.
53. Tuli H, Chaudhary A, Jaswal VS, et al. Ferulic Acid: A Promising Therapeutic Phytochemical and Recent Patents Advances. Recent Pat Inflamm Allergy Drug Discov. 2019;13(1):25-35. doi:10.2174/1872213X13666190621125048.
54. Wang B, Gao Y, Chen L, et al. Chemical constituents, antioxidant and gastrointestinal transit accelerating activities of dried fruit of Crataegus dahurica. Food Chem. 2018;246:41-47. doi:10.1016/j.foodchem.2017.11.011
55. Wang H, Chen L, Zhang X, et al. Kaempferol protects mice from d-GalN/LPS-induced acute liver failure by regulating the ER stressGrp78-CHOP signaling pathway. Biomed Pharmacother. 2019;111:468-475. doi:10.1016/j.biopha.2018.12.105.
56. Yuan Y, Zhai Y, Chen J, et al. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules. 2021;11(7):923. doi:10.3390/biom11070923.
57. Zhang H, Chen J, Cen Y. Burn wound healing potential of a polysaccharide from Sanguisorba officinalis L. in mice. Int J Biol Macromol. 2018;112:862-867. doi:10.1016/j.ijbiomac.2018.01.214.
58. Zhang L, Koyyalamudi SR, Jeong SC, et al. Antioxidant and immunomodulatory activities of polysaccharides from the roots of Sanguisorba officinalis. Int J Biol Macromol. 2012;50(1):123- 129. doi:10.1016/j.ijbiomac.2011.10.018.
59. Zhang D, Jing B, Chen ZN, et al. Ferulic acid alleviates sciatica by inhibiting neuroinflammation and promoting nerve repair via the TLR4/NF-κB pathway. CNS Neurosci Ther. 2023;29(4):1000-1011. doi:10.1111/cns.14060.
60. Zhu H, Chen G, Chen SN, et al. Characterization of polyphenolic constituents from Sanguisorba officinalis L. and its antibacterial activity. Eur Food Res Technol. 2019;245(1):1-12. doi:10.1007/s00217-019-03276-2.
61. Zverev YaF, Bryukhanov VM. Flavonoids as Promising Natural Antioxidants. Bull Med Sci. 2017;1(5).
Review
For citations:
Tomtosova E.V., Rumyantsev E.K., Nikolaev V.M., Chirikova N.K. Phytochemical analysis and antioxidant properties of plant extracts of the Rosaceae family. Yakut Medical Journal. 2024;(4):106-110. (In Russ.) https://doi.org/10.25789/YMJ.2024.88.25