Роль полиморфных вариантов генов FADS в адаптации к условиям Севера и развитии метаболических нарушений
https://doi.org/10.25789/YMJ.2023.81.26
Аннотация
Обзор посвящен обобщению исследований, связанных с изучением роли генов FADS в обмене полиненасыщенных жирных кислот как одного из механизмов адаптации организма человека к влиянию факторов окружающей среды, в частности, холодного климата. Проведен сравнительный анализ распространенности наиболее значимых для циркумполярных этносов полиморфных вариантов rs7115739, rs174570 генов FADS 2-3 у различных этнических групп, в том числе инуитов и якутов. Систематизированы результаты исследований влияния полиморфных маркеров генов FADS на показатели липидного обмена, риск сердечно-сосудистых заболеваний и сахарного диабета 2-го типа в разных мировых популяциях.
Ключевые слова
Об авторах
Т. М. СивцеваРоссия
Сивцева Татьяна Михайловна – к.б.н., в.н.с.
Т. М. Климова
Россия
Климова Татьяна Михайловна - к.м.н, доцент, с.н.с.
Р. Н. Захарова
Россия
Захарова Раиса Николаевна – к.м.н., в.н.с.
Е. П. Аммосова
Россия
Аммосова Елена Петровна – к.м.н., врач функциональн. диагностики
В. Л. Осаковский
Россия
Осаковский Владимир Леонидович – к.б.н., гл.н.с.
Список литературы
1. Анализ роли полиморфных вариантов генов, ассоциированных с ожирением, в развитии метаболического синдрома у женщин / О.В. Кочетова, Л.З. Ахмадишина, Г.Ф. Корытина [и др.] // Ожирение и метаболизм. 2017. Т. 14, № 2. С. 33-40. – DOI 10.14341/ omet2017233-40.
2. Бойко Е.Р. Физиолого-биохимические основы жизнедеятельности человека на Севере. – Екатеринбург : УрО РАН, 2005. – 192 с.
3. Малярчук Б.А., Деренко М.В. Полиморфизм генов метаболизма полиненасыщенных жирных кислот (FADS1 и FADS2) у коренного населения Сибири // Вестник Северо-Восточного научного центра ДВО РАН. 2018. № 3. С. 106-111.
4. Метаболизм липидов и метаболические нарушения в якутской популяции: обзор литературы / Т.М. Сивцева, Т.М. Климова, Е. П. Аммосова [и др.] // Экология человека. 2021. № 4. С. 4-14. – DOI 10.33396/1728-0869-2021-4-4-14.
5. A Single Nucleotide Polymorphism in the FADS1 Gene is Associated with Plasma Fatty Acid and Lipid Profiles and Might Explain Gender Difference in Body Fat Distribution / H. Guo, L. Zhang, C. Zhu [et al.] // Lipids Health Dis. 2017. 16(1): 67. doi: 10.1186/s12944-017-0459-9
6. A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle / K. Nakayama, T. Bayasgalan, F. Tazoe [et al.] //Hum Genet. 2010. 127. P. 685–690 (2010). doi:10.1007/s00439-010-0815-6
7. Adaptive evolution of the FADS gene cluster within Africa / R.A. Mathias, W. Fu, J.M. Akey [et al.] // PLoS One. 2012. 7(9):e44926. doi: 10.1371/journal.pone.0044926 13
8. ALFA Allele Frequency (версия 20201027095038, январь 2021). Available at: https://www.ncbi.nlm.nih.gov/snp/
9. Association of FADS2 rs174575 gene polymorphism and insulin resistance in type 2 diabetes mellitus / S.S. Shetty, K.N. Suchetha, D. Harshini [et al.] // Afr Health Sci. 2020. 20(4). P.1770-1776. doi: 10.4314/ahs.v20i4.30
10. Association of the FADS gene cluster with coronary artery disease and plasma lipid concentrations in the northern Chinese Han population / Y. Wu, L. Zeng, X. Chen [et al.] // Prostaglandins Leukot Essent Fatty Acids. 2017. 117. P. 11-16. doi: 10.1016/j.plefa.2017.01.014
11. Association of two polymorphisms in the FADS1/FADS2 gene cluster and the risk of coronary artery disease and ischemic stroke / Q. Yang, R.X. Yin, X.L. Cao [et al.] // Int J Clin Exp Pathol. 2015. 8(6). P. 7318-31. PMID: 26261632; PMCID: PMC4525966
12. Associations among FADS1 rs174547, eicosapentaenoic acid/arachidonic acid ratio, and arterial stiffness in overweight subjects / M. Kim, M. Kim, H.J. Yoo [et al.] // Prostaglandins Leukot Essent Fatty Acids. 2018. 130. P. 11-18. doi: 10.1016/j.plefa.2018.02.004
13. Davidson M.H. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid // Curr Opin Lipidol. 2013. 24(6): P. 467-74. doi: 10.1097/MOL.0000000000000019
14. Desaturase Activity and the Risk of Type 2 Diabetes and Coronary Artery Disease: A Mendelian Randomization Study / S. Jger, R. Cuadrat, P. Hoffmann [et al.] // Nutrients. 2020. 12(8):2261. doi: 10.3390/nu12082261
15. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits / J. Dumont, L. Goumidi, B. Grenier-Boley [et al.] // Clin Nutr. 2018. 37(5). P. 1683-1689. doi: 10.1016/j.clnu.2017.07.012
16. Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study / Y. Lu, E.J. Feskens, M.E. Dollé [et.al.] // Am J Clin Nutr. 2010. 92(1). P. 258-65. doi: 10.3945/ajcn.2009.29130
17. Erythrocyte membrane phospholipids fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study / J. Kroger, V. Zietemann, C. Enzenbach [et al.] // Am. J. Clin. Nutr. 2011. 93. P. 127–142. doi: 10.3945/ajcn.110.005447
18. Exome sequencing provides evidence of polygenic adaptation to a fat-rich animal diet in indigenous siberian populations / P.H. Hsieh, B. Hallmark, J. Watkins [et al.] // Molecular Biology and Evolution. 2017. 34(11). P. 2913–2926. https://doi.org/10.1093/molbev/msx226
19. FADS1 and ELOVL2 polymorphisms reveal associations for differences in lipid metabolism in a cross-sectional population-based survey of Brazilian men and women / T.M.M. Fujii, M.M. Norde, R.M. Fisberg [et.al.] // Nutr Res. 2020. 78. P. 42-49. doi: 10.1016/j.nutres.2020.04.003
20. Fatty acid desaturase (FADS) gene polymorphism and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: Cross-sectional study / O.Y. Kim, H.H. Lim, L.I. Yang [et.al.] // Nutr. Metab. 2011. 8. 24. doi: 10.1186/1743-7075-8-24
21. Fatty acid desaturase 1 polymorphisms are associated with coronary heart disease in a Chinese population / S.J. Liu, H. Zhi, P.Z. Chen [et al.] // Chin Med J (Engl). 2012. 125(5). P. 801-6.
22. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids / A. Ameur, S. Enroth, A. Johansson [et al.] // Am J Hum Genet. 2012. 90(5). P. 809-20. doi: 10.1016/j.ajhg.2012.03.014
23. Genetic signature of natural selection in first Americans / C.E. Amorim, K. Nunes, D. Meyer [et al.] // Proc Natl Acad Sci U S A. 2017. 114(9). P. 2195-2199. doi: 10.1073/pnas.1620541114
24. Genetic variants in desaturase gene, erythrocyte fatty acids, and risk for type 2 diabetes in Chinese Hans / T. Huang, J. Sun, Y. Chen [et al.] // Nutrition. 2014. 30(7-8). P. 897-902. doi: 10.1016/j.nut.2014.01.006
25. Genetic variants of the fatty acid desaturase gene cluster are associated with plasma LDL cholesterol levels in Japanese males / Y. Sone, T. Kido, T. Ainuki [et.al.] // J Nutr Sci Vitaminol (Tokyo). 2013. 59(4). P. 325-35. doi: 10.3177/jnsv.59.325
26. Hellstrand S., Ericson U., Gullberg B. Genetic variation in FADS1 has little effect on the association between dietary PUFA intake and cardiovascular disease [et al.] / // J Nutr. 2014. 144(9). P. 1356-63. doi: 10.3945/jn.114.192708
27. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study / T. Tanaka, J. Shen, G.R. Abecasis [et. al.] // PLoS Genet. 2009. 5(1):e1000338. doi: 10.1371/journal.pgen.1000338
28. Genome-wide sequence analyses of ethnic populations across Russia / D.V. Zhernakova, V. Brukhin, S. Malov [et.al.]// Genomics. 2020. v.112. P. 442-458. Doi.org/10.1016/j.geno.2019.03.007
29. Going global by adapting local: A review of recent human adaptation / S. Fan, M.E. Hansen, Y. Lo [et al.] // Science. 2016. 354(6308). P. 54- 59. doi: 10.1126/science.aaf5098
30. Greenlandic Inuit show genetic signatures of diet and climate adaptation / M. Fumagalli, I. Moltke, N. Grarup [et al.] // Science. 2015. 349(6254). P.1343-7. doi: 10.1126/science.aab2319
31. Hlusko L.J., McNelis M.G. Evolutionary adaptation highlights the interconnection of fatty acids, sunlight, inflammation and epithelial adhesion // Acta Paediatr. 2022. 111(7). – P.1313- 1318. doi: 10.1111/apa.16358
32. Impact of Amerind ancestry and FADS genetic variation on omega-3 deficiency and cardiometabolic traits in Hispanic populations / C. Yang, B. Hallmark, J.C. Chai [et.al.] // Commun Biol. 2021. 4(1): 918. doi: 10.1038/s42003-021-02431-4
33. Intake levels of dietary long-chain PUFAs modify the association between genetic variation in FADS and LDL-C / S. Hellstrand, E. Sonestedt, U. Ericson [et al.] // J Lipid Res. 2012. 53(6). P. 1183-9. doi: 10.1194/jlr.P023721
34. Khodarahmi M., Nikniaz L., Abbasalizad Farhangi M. The Interaction Between Fatty Acid Desaturase-2 (FADS2) rs174583 Genetic Variant and Dietary Quality Indices (DASH and MDS) Constructs Different Metabolic Phenotypes Among Obese Individuals // Front Nutr. 2021. 8:669207. doi: 10.3389/fnut.2021.669207
35. Mathieson I. Limited Evidence for Selection at the FADS Locus in Native American Populations // Mol Biol Evol. 2020. 37(7). 2029-2033. doi: 10.1093/molbev/msaa064
36. Mathieson S., Mathieson I. FADS1 and the Timing of Human Adaptation to Agriculture // Mol Biol Evol. 2018. 35(12). P. 2957-2970. doi: 10.1093/molbev/msy180
37. Mazoochian L., Mohammad Sadeghi H.M., Pourfarzam M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes // J Res Med Sci. 2018. 23:47. doi: 10.4103/jrms.JRMS_961_17
38. Panda C., Varadharaj S., Voruganti V.S. PUFA, genotypes and risk for cardiovascular disease // Prostaglandins Leukot Essent Fatty Acids. 2022. 176:102377. doi: 10.1016/j.plefa.2021.102377
39. Plasma Phospholipid Fatty Acids, FADS1 and Risk of 15 Cardiovascular Diseases: A Mendelian Randomisation Study / S. Yuan, M. Bck, M. Bruzelius [et al.] // Nutrients. 2019. 11(12):3001. doi: 10.3390/nu11123001
40. Polymorphism of rs174616 in the FADS1- FADS2 gene cluster is associated with a reduced risk of type 2 diabetes mellitus in northern Han Chinese people / M. Yao, J. Li, T. Xie [et al.] // Diabetes Res. Clin. Pract. 2015. 109 (1). P. 206–212. doi: 10.1016/j.diabres.2015.03.009
41. Polymorphisms in FADS1 and FADS2 alter plasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease / S.W. Li, J. Wang, Y. Yang [et al.]// J Transl Med. 2016. 14:79. doi: 10.1186/s12967-016-0834-8
42. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases / F.H. Chilton, R. Dutta, L.M. Reynolds [et al.] // Nutrients. 2017. 9(11):1165. doi: 10.3390/nu9111165.
43. Roles of the Unsaturated Fatty Acid Docosahexaenoic Acid in the Central Nervous System: Molecular and Cellular Insights / A.B. Petermann, M. Reyna-Jeldes, L. Ortega [et al.] // Int J Mol Sci. 2022. 23(10):5390. doi: 10.3390/ijms23105390.
44. Seasonal variation in basal metabolic rates among the yakut (Sakha) of Northeastern Siberia / W.R. Leonard, S.B. Levy, L.A. Tarskaia [et al.] // American journal of human biology. 2014. № 4 (26). C. 437–45.
45. Serum Lipid Concentrations and FADS Genetic Variants in Young Mexican College Students: The UP-AMIGOS Cohort Study / I. Vazquez-Vidal, V.S. Voruganti, B.A. Hannon [et. al.] // Lifestyle Genom. 2018. 11(1). P. 40-48. doi: 10.1159/000488085
46. Shetty S.S., Kumari N.S. Fatty acid desaturase 2 (FADS 2) rs174575 (C/G) polymorphism, circulating lipid levels and susceptibility to type-2 diabetes mellitus // Sci Rep. 2021. 11(1):13151. doi: 10.1038/s41598-021-92572-7.
47. The distribution of three candidate cold-resistant SNPs in six minorities in North China / Q. Li, K. Dong, L. Xu [et.al.] // BMC Genomics. 2018. 19(1):134. doi: 10.1186/s12864-018-4524-1
48. Variants in CPT1A, FADS1, and FADS2 are Associated with Higher Levels of Estimated Plasma and Erythrocyte Delta-5 Desaturases in Alaskan Eskimos / V.S. Voruganti, P.B. Higgins, S.O. Ebbesson [et al.] // Front Genet. 2012. 3:86. doi: 10.3389/fgene.2012.00086
49. Zulyniak M.A., Fuller H., Iles M.M. Investigation of the Causal Association between LongChain n-6 Polyunsaturated Fatty Acid Synthesis and the Risk of Type 2 Diabetes: A Mendelian Randomization Analysis // Lifestyle Genom. 2020. 13(5). P. 146-153. doi: 10.1159/000509663
50. Δ-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by Balancing Proinflammatory and Proresolving Lipid Mediators/ A.D. Gromovsky, R.C. Schugar, A.L. Brown. [et al.] // Arterioscler Thromb Vasc Biol. 2018. 38(1). P. 218- 231. doi: 10.1161/ATVBAHA.117.309660.
Рецензия
Для цитирования:
Сивцева Т.М., Климова Т.М., Захарова Р.Н., Аммосова Е.П., Осаковский В.Л. Роль полиморфных вариантов генов FADS в адаптации к условиям Севера и развитии метаболических нарушений. Якутский медицинский журнал. 2023;(1):106-112. https://doi.org/10.25789/YMJ.2023.81.26
For citation:
Sivtseva T.M., Klimova T.M., Zakharova R.N., Ammosova E.P., Osakovsky V.L. The role of FADS gene polymorphic variants in adaptation to the Northern climatic conditions and metabolic disorders. Yakut Medical Journal. 2023;(1):106-112. https://doi.org/10.25789/YMJ.2023.81.26