Preview

Якутский медицинский журнал

Расширенный поиск

Эндотелиопротекторные функции липопротеинов высокой плотности

https://doi.org/10.25789/YMJ.2023.82.22

Аннотация

   Цель обзора – дать современные представления об участии липопротеинов высокой плотности (ЛПВП) в функционировании эндотелиальных клеток и предотвращении развития эндотелиальной дисфункции.

   Связываясь с различными рецепторами на эндотелиальных клетках, ЛПВП вызывают индукцию эндотелиальной синтазы оксида азота, повышают продукцию NO, стимулируют синтез простациклина, что приводит к снижению тонуса сосудов. Подавляя синтез молекул межклеточной адгезии, ЛПВП предотвращают миграцию лейкоцитов и моноцитов/макрофагов в сосудистую стенку, оказывая противовоспалительное действие. ЛПВП ингибируют продукцию активных форм кислорода, предотвращают апоптоз, стимулируют пролиферацию и миграцию эндотелиальных клеток.

Об авторах

О. Н. Потеряева
НИИ биохимии ФИЦ фундаментальной и трансляционной медицины
Россия

Ольга Николаевна Потеряева, д. м. н., в. н. с.

Новосибирск



И. Ф. Усынин
НИИ биохимии ФИЦ фундаментальной и трансляционной медицины
Россия

Иван Фёдорович Усынин, д. б. н., зав. лаб.

Новосибирск



Список литературы

1. Перова Н.В. Атеромаркеры липопротеинов высокой плотности. Ч. II. Липопротеины высокой плотности: структура, состав, физико-химические и физиологические антиатерогенные свойства, их механизмы и маркеры (обзор литературы)// Профилакт. медицина. 2017; 20(4): 37-44. DOI: 10.17116/profmed201720437-44

2. Роль кавеол и кавеолина в норме и патологии / Р.И. Воробъёв, Г.И. Шумахер, М.А., Хорева [и др.] // Кардиоваскулярная терапия и профилактика. 2008; 7(8): 105-111.

3. Роль сахарного диабета в возникновении и развитии эндотелиальной дисфункции / Э. Б. Попыхова, Т.В. Степанова, Д.Д. Лагутина [и др.] // Проблемы эндокринологии. 2020; 66(1): 47-55. DOI: 10.14341/probl12212

4. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit / F. Brites, M. Martin, I. Guillas [et al.] // BBA Clin. 2017; 8: 66–77. DOI:10.1016/j.bbacli.2017.07.002.

5. An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells / Q-H. Zhang, X-Y. Zu, R-X. Cao [et al.] // Biochem Biophys Res Commun. 2012; 420(1): 17–23. DOI: 10.1016/j.bbrc.2012.02.103.

6. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells / B. Pan, J. Kong, J. Jin [et al.] // BBA - Molecular and Cell Biology of Lipids. 2016; 1861(6): 501–512. DOI: 10.1016/j.bbalip.2016.03.022

7. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1 / D. He, M. Zhao, C. Wu [et al.] // Redox Biol. 2018; 15: 228–242. DOI: 10.1016/j.redox.2017.11.027

8. Apolipoprotein A-I improves pancreatic β-cell function independent of the ATP-binding cassette transporters ABCA1 and ABCG1 / L. Hou, S. Tang, BJ. Wu [et al.] // FASEB J. 2019; 33(7): 8479-8489. DOI: 10.1096/fj.201802512RR.

9. ApoA1: a protein with multiple therapeutic functions / BJ. Cochran, KL. Ong, B. Manandhar [et al.] // Curr Atheroscler Rep. 2021; 23(3):11. DOI: 10.1007/s11883-021-00906-7.

10. Apolipoprotein M-bound sphin-gosine1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis / M. Mathiesen Janiurek, R. Soylu-Kucharz, C. Christoffersen [et al.] // Elife. 2019; 8: e49405. DOI: 10.7554/eLife.49405.

11. Apolipoprotein A-I attenuates LL-37-induced endothelial cell cytotoxicity / D. Svensson, J.O. Lagerstedt, B-O. Nilsson [et al.] Biochem Biophys Res Commun. 2017; 493(1): 71-76. DOI: 10.1016/j.bbrc.2017.09.072

12. Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase / V. Gonzalez-Pecchi, S. Valdes, V. Pons [et al.] // Microvasc Res. 2015; 98: 9–15. DOI: 10.1016/j.mvr.2014.11.003

13. Apolipoprotein A-I mimetic peptide reverses impaired arterial healing after injury by reducing oxidative stress / M.A. Rosenbaum, P. Chaudhuri, B. Abelson [et al.] // Atherosclerosis. 2015; 241(2): 709-715. DOI: 10.1016/j.atherosclerosis.2015.06.018

14. ATPbinding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase / N. Terasaka, M. Westerterp, J. Koetsveld [et al.] // Arter Thromb Vasc Biol. 2010; 30(11): 2219–2225. DOI: 10.1161/ATVBAHA.110.213215.

15. Barter PJ, Rye KA. Targeting high-density lipoproteins to reduce cardiovascular risk: what is the evidence? Clin Ther. 2015; 37(12): 2716-2731. DOI: 10.1016/j.clinthera.2015.07.021.

16. D-4F induces hemeoxygenase-1 and extracellular superoxide dismutase, decreases endothelial cell sloughing, and improves vascular reactivity in rat model of diabetes / AL. Kruger, S. Peterson, P. Turkseven [et al.] // Circulation. 2005; 111(23): 3126-3134. DOI: 10.1161/CIRCULATIONAHA.104.517102

17. D-4F Ameliorates Contrast Media-Induced Oxidative Injuries in Endothelial Cells via the AMPK/PKC Pathway / Y. Guo, W. Li, M. Qian [et al.] // Front Pharmacol. 2021; 11:556074. DOI: 10.3389/fphar.2020.556074.

18. Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet / J. Ou, J. Wang, H. Xu [et al.] / Circ Res. 2005; 97(11): 1190-1197. DOI: 10.1161/01.RES.0000190634.60042

19. Garbuzova-Davis S, Willing AE, Borlongan CV. Apolipoprotein A1 enhances endothelial cell survival in an in vitro model of ALS. ENEURO. 2022; 9(4): 0140-22.2022 1–11. DOI: 10.1523/ENEURO.0140-22.2022

20. Jackson AO, Rahman GA, Long S. Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem. 2021; 476(8): 3065–3078. DOI: 10.1007/s11010-020-04037-6

21. Jomard A, Osto E. High density lipoprotein: metabolism, function, and therapeutic potential. Front Cardiovasc Med. 2020; 7(39):1-12. DOI: 10.3389/fcvm.2020.00039.

22. High-density lipoprotein antiinflammatory capacity and incident cardiovascular events / C. Jia, J.L.C. Anderson, E.G. Gruppen [et al.] // Circulation. 2021; 143(20): 1935-1945. DOI: 10.1161/CIRCULATIONAHA.120.050808

23. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation / F. Jin, N. Hagemann, L. Sun [et al.] // Angiogenesis 2018; 21(2): 381-394. DOI: 10.1007/s10456-018-9603-z

24. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation / B.G. Drew, N.H. Fidge, G. Gallon-Beaumie [et al.] // Proc Natl Acad Sci. USA. 2004; 101: 6999 - 7004. DOI: 10.1073/pnas.0306266101

25. High-density lipoproteins induce transforming growth factor-beta2 expression in endothelial cells / G.D. Norata, E. Callegari, M. Marchesi [et al.] // Circulation. 2005;111: 2805–2811

26. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3 / J.R. Nofer, M. van der Giet, M. Tolle [et al.] // J Clin Invest. 2004; 113(4): 569 – 581. DOI: 10.1172/JCI18004.

27. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I / D. Seetharam, C. Mineo, A.K. Gormley [et al.] // Circ Res. 2006; 98(1): 63-72. DOI: 10.1161/01.RES.0000199272.59432.5b.

28. High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor class B type I / J.T. Tan, H.C. Prosser, L.L. Dunn [et al.] // Diabetes. 2016; 65(10): 3091–3103. DOI: 10.2337/db15-1668

29. HDL therapy today: from atherosclerosis, to stent compatibility to heart failure / C.R. Sirtori, M. Ruscica, L. Calabresi [et al.] // Ann Med. 2019; 51(7-8): 345-359. DOI: 10.1080/07853890.2019.1694695

30. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway / D. Theofilatos, P. Fotakis, E. Valanti [et al.] // Metabolism. 2018; 87: 36–47. DOI: 10.1016/j.metabol.2018.06.002

31. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1 / P.M. Christensen, C.H. Liu, S.L. Swendeman [et al.] // FASEB J. 2016; 30(6): 2351–2359. DOI: 10.1096/fj.201500064

32. Induction of scavenger receptor class B type I is critical for simvastatin enhancement of high-density lipoprotein-induced anti-inflammatory actions in endothelial cells / T. Kimura, C. Mogi, H. Tomura [et al.] // J Immunol. 2008; 181: 7332–7340. DOI: 10.4049/jimmunol.181.10.7332

33. Martinez-Gonzalez J, Escudero I, Badimon L. Simvastatin potenciates PGI(2) release induced by HDL in human VSMC: effect on Cox-2 up-regulation and MAPK signalling pathways activated by HDL. Atherosclerosis. 174(2): 305-313. DOI: 10.1016/j.atherosclerosis.2004.01.037174.

34. Mechanism and role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells / T. Kimura, H. Tomura, K. Sato [et al] // J Biol Chem. 2010; 285(7): 4387-4397. DOI: 10.1074/jbc.M109.043869

35. Mineo C, Shaul PW. Regulation of signal transduction by HDL. J Lipid Res. 2013; 54(9):2315–24. DOI: 10.1194/jlr.R039479

36. Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2019; 116(7):1254-1274. DOI: 10.1093/cvr/cvz338.

37. Nofer JR. Signal transduction by HDL: Agonists, receptors, and signaling cascades. Handb. Exp. Pharmacol. /A. von Eckardstein, D. Kardassis (eds.) 2014; 224: 229–256. DOI: 10.1007/978-3-319-09665-0_6

38. Pharmacological inhibition of the F1-AT-Pase/P2Y1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation / C. Cabou, P. Honorato, L. Briceño [et al.] // Acta Physiol. 2019; 226(3): e13268. DOI: 10.1111/apha.13268

39. Poteryaeva O.N., Usynin I.F. Antidiabetic role of high density lipoproteins. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2019; 13(2): 113-21. DOI: 10.1134/S1990750819020070

40. Reciprocal multifaceted interaction between HDL (high-density lipoprotein) and myocardial infarction / A.C. Sposito, J.C. de Lima-Junior, F.A. Moura [et al.] Arterioscler Thromb Vasc Biol. 2019; 39(8): 1550–1564. DOI:10.1161/atvbaha.119.312880

41. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein / R.J. Bisoendial, R.J. Bisoendial, G. Kees [et al.] // Circulation. 2003; 107(23): 2944–2948. doi: 10.1161/01.cir.0000070934.69310.1a

42. Riwanto M, Rohrer L, von Eckardstein A. Dysfunctional HDL: From Structure function-relationships to biomarkers /A. von Eckardstein, D. Kardassis (eds.), High Density Lipoproteins, Handbook of Experimental Pharmacology. 2015; 224. DOI: 10.1007/978-3-319-09665-0_10

43. Robert J, Osto E, von Eckardstein A. The endothelium is both a target and a barrier of HDL’s protective functions. Cells. 2021; 10(5): 1041. DOI: 10.3390/cells10051041.

44. Soran H, Schofield JD, Durrington PN. Antioxidant properties of HDL. Front Pharmacol. 2015; 6: 222. DOI: 10.3389/fphar.2015.00222.

45. Sphingosine-1-phosphate promotes barrier-stabilizing effects in human microvascular endothelial cells via AMPK-dependent mechanisms / S. Dennhardt, K.R. Finke, A. Huwiler [et al.] // BBA Mol Basis Dis. 2019; 1865: 774-781. DOI: 10.1016/j.bbadis.2018.12.022

46. Structure-function relationships of HDL in diabetes and coronary heart disease / M. Cardner, M. Yalcinkaya, S. Goetze [et al.] // JCI Insight. 2020; 5(1): e131491. DOI: 10.1172/jci.insight.131491

47. The apolipoprotein M/S1P Axis controls triglyceride metabolism and Brown fat activity / C. Christoffersen, C.K. Federspiel, A. Borup [et al.] // Cell Reports. 2018; 22:175–188. DOI: 10.1016/j.celrep.2017.12.029

48. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway / D. Liu, Z. Ding, M. Wu [et al.] // JMCC. 2017; 105: 77-88. DOI:10.1016/j.yjmcc.2017.01.017

49. Understanding myeloperoxidase-induced damage to HDL structure and function in the vessel wall: implications for HDL-based therapies / G. Marsche, J.T. Stadler, J. Kargl [et al.] // Antioxidants. 2022; 11: 556. DOI: 10.3390/antiox11030556

50. Tan JT, Ng MK, Bursill CA. The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res. 2015; 106(2): 184-93. DOI: 10.1093/cvr/cvv104

51. The compensatory enrichment of sphingosine-1-phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus / X. Tong, Lv Pu, A.V. Mathew [et al.] // Cardiovasc Diabetol. 2014; 13:82. DOI: 10.1186/1475-2840-13-82.

52. Type 2 diabetes is associated with loss of HDL endothelium protective functions / T. Vaisar, E. Couzens, A. Hwang [et al.] // PLoS ONE. 2018; 13(3): e0192616. DOI: 10.1371/journal.pone.0192616

53. Van der Vorst EPC. High-density lipoproteins and apolipoprotein A1. Vertebrate and invertebrate respiratory proteins, lipoproteins and other body fluid proteins. 2020; 399-420. DOI: 10.1007/978-3-030-41769-7_16

54. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcifcation via SMAD-dependent BMP signaling / B.A. Willems, M. Furmanik, M.M.J. Caron [et al.] // Sci Rep. 2018; 8(1): 4961. DOI: 10.1038/s41598-018-23353-y


Рецензия

Для цитирования:


Потеряева О.Н., Усынин И.Ф. Эндотелиопротекторные функции липопротеинов высокой плотности. Якутский медицинский журнал. 2023;(2):90-95. https://doi.org/10.25789/YMJ.2023.82.22

For citation:


Poteryaeva O.N., Usynin I.F. Endothelial protective functions of high density lipoproteins. Yakut Medical Journal. 2023;(2):90-95. https://doi.org/10.25789/YMJ.2023.82.22

Просмотров: 44


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)