Endothelial protective functions of high density lipoproteins
https://doi.org/10.25789/YMJ.2023.82.22
Abstract
The goal of this review is to describe modern concepts concerning the involvement of HDLs in the functioning of endothelial cells and preventing the development of endothelial dysfunction.
Upon binding to various receptors on endothelial cells, HDLs initiate the induction of endothelial nitric oxide synthase, enhance the production of NO, and stimulate the synthesis of prostacyclin, thus leading to vasorelaxation. By suppressing the synthesis of intercellular adhesion molecules, HDLs prevent the migration of leucocytes and monocytes/macrophages into the vascular wall, exerting anti-inflammatory action. HDLs inhibit the production of reactive oxygen species, prevent apoptosis, and stimulate the proliferation and migration of endothelial cells.
Keywords
About the Authors
O. N. PoteryaevaRussian Federation
Novosibirsk
I. F. Usynin
Russian Federation
Novosibirsk
References
1. Perova N.V. Atheromarkers of high-density lipoproteins. Part II. High-density lipoproteins: structure, composition, physicochemical and physiological antiatherogenic properties, their mechanisms and markers (a review of literature) // The Russian Journal of Preventive Medicine. 2017; 20(4): 37-44. DOI: 10.17116/profmed201720437-44
2. The role of caveolae and caveolin in health and disease / R.I. Vorobiev, G.I. Shumakher, M.A. Khoreva [et al.] // Cardiovascular Therapy and Prevention. 2008; 7(8): 105-111.
3. The role of diabetes in the onset and development of endothelial dysfunction / E.B. Popyhova, T.V.Stepanova, D.D. Lagutina [et al.] // Problems of Endocrinology. 2020; 66(1): 47-55. DOI: 10.14341/probl12212
4. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit / F. Brites, M. Martin, I. Guillas [et al.] // BBA Clin. 2017; 8: 66–77. DOI:10.1016/j.bbacli.2017.07.002.
5. An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells / Q-H. Zhang, X-Y. Zu, R-X. Cao [et al.] // Biochem Biophys Res Commun. 2012; 420(1): 17–23. DOI: 10.1016/j.bbrc.2012.02.103.
6. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells / B. Pan, J. Kong, J. Jin [et al.] // BBA - Molecular and Cell Biology of Lipids. 2016; 1861(6): 501–512. DOI: 10.1016/j.bbalip.2016.03.022
7. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1 / D. He, M. Zhao, C. Wu [et al.] // Redox Biol. 2018; 15: 228–242. DOI: 10.1016/j.redox.2017.11.027
8. Apolipoprotein A-I improves pancreatic β-cell function independent of the ATP-binding cassette transporters ABCA1 and ABCG1 / L. Hou, S. Tang, BJ. Wu [et al.] // FASEB J. 2019; 33(7): 8479-8489. DOI: 10.1096/fj.201802512RR.
9. ApoA1: a protein with multiple therapeutic functions / BJ. Cochran, KL. Ong, B. Manandhar [et al.] // Curr Atheroscler Rep. 2021; 23(3):11. DOI: 10.1007/s11883-021-00906-7.
10. Apolipoprotein M-bound sphin-gosine1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis / M. Mathiesen Janiurek, R. Soylu-Kucharz, C. Christoffersen [et al.] // Elife. 2019; 8: e49405. DOI: 10.7554/eLife.49405.
11. Apolipoprotein A-I attenuates LL-37-induced endothelial cell cytotoxicity / D. Svensson, J.O. Lagerstedt, B-O. Nilsson [et al.] Biochem Biophys Res Commun. 2017; 493(1): 71-76. DOI: 10.1016/j.bbrc.2017.09.072
12. Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase / V. Gonzalez-Pecchi, S. Valdes, V. Pons [et al.] // Microvasc Res. 2015; 98: 9–15. DOI: 10.1016/j.mvr.2014.11.003
13. Apolipoprotein A-I mimetic peptide reverses impaired arterial healing after injury by reducing oxidative stress / M.A. Rosenbaum, P. Chaudhuri, B. Abelson [et al.] // Atherosclerosis. 2015; 241(2): 709-715. DOI: 10.1016/j.atherosclerosis.2015.06.018
14. ATPbinding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase / N. Terasaka, M. Westerterp, J. Koetsveld [et al.] // Arter Thromb Vasc Biol. 2010; 30(11): 2219–2225. DOI: 10.1161/ATVBAHA.110.213215.
15. Barter PJ, Rye KA. Targeting high-density lipoproteins to reduce cardiovascular risk: what is the evidence? Clin Ther. 2015; 37(12): 2716-2731. DOI: 10.1016/j.clinthera.2015.07.021.
16. D-4F induces hemeoxygenase-1 and extracellular superoxide dismutase, decreases endothelial cell sloughing, and improves vascular reactivity in rat model of diabetes / AL. Kruger, S. Peterson, P. Turkseven [et al.] // Circulation. 2005; 111(23): 3126-3134. DOI: 10.1161/CIRCULATIONAHA.104.517102
17. D-4F Ameliorates Contrast Media-Induced Oxidative Injuries in Endothelial Cells via the AMPK/PKC Pathway / Y. Guo, W. Li, M. Qian [et al.] // Front Pharmacol. 2021; 11:556074. DOI: 10.3389/fphar.2020.556074.
18. Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet / J. Ou, J. Wang, H. Xu [et al.] / Circ Res. 2005; 97(11): 1190-1197. DOI: 10.1161/01.RES.0000190634.60042
19. Garbuzova-Davis S, Willing AE, Borlongan CV. Apolipoprotein A1 enhances endothelial cell survival in an in vitro model of ALS. ENEURO. 2022; 9(4): 0140-22.2022 1–11. DOI: 10.1523/ENEURO.0140-22.2022
20. Jackson AO, Rahman GA, Long S. Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem. 2021; 476(8): 3065–3078. DOI: 10.1007/s11010-020-04037-6
21. Jomard A, Osto E. High density lipoprotein: metabolism, function, and therapeutic potential. Front Cardiovasc Med. 2020; 7(39):1-12. DOI: 10.3389/fcvm.2020.00039.
22. High-density lipoprotein antiinflammatory capacity and incident cardiovascular events / C. Jia, J.L.C. Anderson, E.G. Gruppen [et al.] // Circulation. 2021; 143(20): 1935-1945. DOI: 10.1161/CIRCULATIONAHA.120.050808
23. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation / F. Jin, N. Hagemann, L. Sun [et al.] // Angiogenesis 2018; 21(2): 381-394. DOI: 10.1007/s10456-018-9603-z
24. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation / B.G. Drew, N.H. Fidge, G. Gallon-Beaumie [et al.] // Proc Natl Acad Sci. USA. 2004; 101: 6999 - 7004. DOI: 10.1073/pnas.0306266101
25. High-density lipoproteins induce transforming growth factor-beta2 expression in endothelial cells / G.D. Norata, E. Callegari, M. Marchesi [et al.] // Circulation. 2005;111: 2805–2811
26. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3 / J.R. Nofer, M. van der Giet, M. Tolle [et al.] // J Clin Invest. 2004; 113(4): 569 – 581. DOI: 10.1172/JCI18004.
27. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I / D. Seetharam, C. Mineo, A.K. Gormley [et al.] // Circ Res. 2006; 98(1): 63-72. DOI: 10.1161/01.RES.0000199272.59432.5b.
28. High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor class B type I / J.T. Tan, H.C. Prosser, L.L. Dunn [et al.] // Diabetes. 2016; 65(10): 3091–3103. DOI: 10.2337/db15-1668
29. HDL therapy today: from atherosclerosis, to stent compatibility to heart failure / C.R. Sirtori, M. Ruscica, L. Calabresi [et al.] // Ann Med. 2019; 51(7-8): 345-359. DOI: 10.1080/07853890.2019.1694695
30. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway / D. Theofilatos, P. Fotakis, E. Valanti [et al.] // Metabolism. 2018; 87: 36–47. DOI: 10.1016/j.metabol.2018.06.002
31. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1 / P.M. Christensen, C.H. Liu, S.L. Swendeman [et al.] // FASEB J. 2016; 30(6): 2351–2359. DOI: 10.1096/fj.201500064
32. Induction of scavenger receptor class B type I is critical for simvastatin enhancement of high-density lipoprotein-induced anti-inflammatory actions in endothelial cells / T. Kimura, C. Mogi, H. Tomura [et al.] // J Immunol. 2008; 181: 7332–7340. DOI: 10.4049/jimmunol.181.10.7332
33. Martinez-Gonzalez J, Escudero I, Badimon L. Simvastatin potenciates PGI(2) release induced by HDL in human VSMC: effect on Cox-2 up-regulation and MAPK signalling pathways activated by HDL. Atherosclerosis. 174(2): 305-313. DOI: 10.1016/j.atherosclerosis.2004.01.037174.
34. Mechanism and role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells / T. Kimura, H. Tomura, K. Sato [et al] // J Biol Chem. 2010; 285(7): 4387-4397. DOI: 10.1074/jbc.M109.043869
35. Mineo C, Shaul PW. Regulation of signal transduction by HDL. J Lipid Res. 2013; 54(9):2315–24. DOI: 10.1194/jlr.R039479
36. Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2019; 116(7):1254-1274. DOI: 10.1093/cvr/cvz338.
37. Nofer JR. Signal transduction by HDL: Agonists, receptors, and signaling cascades. Handb. Exp. Pharmacol. /A. von Eckardstein, D. Kardassis (eds.) 2014; 224: 229–256. DOI: 10.1007/978-3-319-09665-0_6
38. Pharmacological inhibition of the F1-AT-Pase/P2Y1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation / C. Cabou, P. Honorato, L. Briceño [et al.] // Acta Physiol. 2019; 226(3): e13268. DOI: 10.1111/apha.13268
39. Poteryaeva O.N., Usynin I.F. Antidiabetic role of high density lipoproteins. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2019; 13(2): 113-21. DOI: 10.1134/S1990750819020070
40. Reciprocal multifaceted interaction between HDL (high-density lipoprotein) and myocardial infarction / A.C. Sposito, J.C. de Lima-Junior, F.A. Moura [et al.] Arterioscler Thromb Vasc Biol. 2019; 39(8): 1550–1564. DOI:10.1161/atvbaha.119.312880
41. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein / R.J. Bisoendial, R.J. Bisoendial, G. Kees [et al.] // Circulation. 2003; 107(23): 2944–2948. doi: 10.1161/01.cir.0000070934.69310.1a
42. Riwanto M, Rohrer L, von Eckardstein A. Dysfunctional HDL: From Structure function-relationships to biomarkers /A. von Eckardstein, D. Kardassis (eds.), High Density Lipoproteins, Handbook of Experimental Pharmacology. 2015; 224. DOI: 10.1007/978-3-319-09665-0_10
43. Robert J, Osto E, von Eckardstein A. The endothelium is both a target and a barrier of HDL’s protective functions. Cells. 2021; 10(5): 1041. DOI: 10.3390/cells10051041.
44. Soran H, Schofield JD, Durrington PN. Antioxidant properties of HDL. Front Pharmacol. 2015; 6: 222. DOI: 10.3389/fphar.2015.00222.
45. Sphingosine-1-phosphate promotes barrier-stabilizing effects in human microvascular endothelial cells via AMPK-dependent mechanisms / S. Dennhardt, K.R. Finke, A. Huwiler [et al.] // BBA Mol Basis Dis. 2019; 1865: 774-781. DOI: 10.1016/j.bbadis.2018.12.022
46. Structure-function relationships of HDL in diabetes and coronary heart disease / M. Cardner, M. Yalcinkaya, S. Goetze [et al.] // JCI Insight. 2020; 5(1): e131491. DOI: 10.1172/jci.insight.131491
47. The apolipoprotein M/S1P Axis controls triglyceride metabolism and Brown fat activity / C. Christoffersen, C.K. Federspiel, A. Borup [et al.] // Cell Reports. 2018; 22:175–188. DOI: 10.1016/j.celrep.2017.12.029
48. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway / D. Liu, Z. Ding, M. Wu [et al.] // JMCC. 2017; 105: 77-88. DOI:10.1016/j.yjmcc.2017.01.017
49. Understanding myeloperoxidase-induced damage to HDL structure and function in the vessel wall: implications for HDL-based therapies / G. Marsche, J.T. Stadler, J. Kargl [et al.] // Antioxidants. 2022; 11: 556. DOI: 10.3390/antiox11030556
50. Tan JT, Ng MK, Bursill CA. The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res. 2015; 106(2): 184-93. DOI: 10.1093/cvr/cvv104
51. The compensatory enrichment of sphingosine-1-phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus / X. Tong, Lv Pu, A.V. Mathew [et al.] // Cardiovasc Diabetol. 2014; 13:82. DOI: 10.1186/1475-2840-13-82.
52. Type 2 diabetes is associated with loss of HDL endothelium protective functions / T. Vaisar, E. Couzens, A. Hwang [et al.] // PLoS ONE. 2018; 13(3): e0192616. DOI: 10.1371/journal.pone.0192616
53. Van der Vorst EPC. High-density lipoproteins and apolipoprotein A1. Vertebrate and invertebrate respiratory proteins, lipoproteins and other body fluid proteins. 2020; 399-420. DOI: 10.1007/978-3-030-41769-7_16
54. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcifcation via SMAD-dependent BMP signaling / B.A. Willems, M. Furmanik, M.M.J. Caron [et al.] // Sci Rep. 2018; 8(1): 4961. DOI: 10.1038/s41598-018-23353-y
Review
For citations:
Poteryaeva O.N., Usynin I.F. Endothelial protective functions of high density lipoproteins. Yakut Medical Journal. 2023;(2):90-95. https://doi.org/10.25789/YMJ.2023.82.22