Preview

Yakut Medical Journal

Advanced search

Dependence of immune reactions on the stage of oncological disease

https://doi.org/10.25789/YMJ.2022.78.16

Abstract

Patients with oncological diseases of various localization were examined. It has been established that immune responses in malignant neoplasms differ depending on the stage of the disease. At the initial stages (I-II), a cytokine reaction is noted, the antibody formation with IgE against the background of inhibition of phagocytic activity, which is associated with the reorientation of the phagocyte to exocytosis. At III-IV stages of cancer, the activity of cytokine and reagin reactions increases in parallel with autosensitization. This period of the disease is characterized by an increase in the phagocytic activity of neutrophils.

About the Authors

L. K. Dobrodeeva
N.P. Laverov Institute of Physiology of Natural Adaptations, Russian Academy of Sciences
Russian Federation

Dobrodeeva Liliya Konstantinovna – MD, Prof., Director, Head of Scientific Research

Arkhangelsk



V. P. Patrakeeva
N.P. Laverov Institute of Physiology of Natural Adaptations, Russian Academy of Sciences
Russian Federation

Patrakeeva Veronika Pavlovna – Candidate of Biological Sciences, associate researche

Arkhangelsk



M. Yu Strekalovskaya
N.P. Laverov Institute of Physiology of Natural Adaptations, Russian Academy of Sciences
Russian Federation

Strekalovskaya Marina Yuryevna – postgraduate student

Arkhangelsk



References

1. Balashova S.N., Dobrodeeva L.K., SamodovaA. V. Immunity state of the inhabitants of the Arctic territory on the Polar night and Polar day / S.N. Balashov, L.K. Dobrodeeva, A.V. Samorova // Biomonitoring in the Arctic. Abstracts of the international conference / Ed. by T. Sorokin; M.V. Lomonosov Northern (Arctic) Federal University. Arkhangelsk, 2020. - P. 72-77

2. Samodova A.V., Dobrodeeva L.K., Balashova S.N. [et al.]. Immune background in the period of the polar day in the able-bodied population living in climatogeographic conditions of the archipelago Spitsbergen // Integrated studies of the nature of Svalbard and the adjacent shelf. Abstracts of XV All-Russian Scientific Conference with international participation. Murmansk Marine Biological Institute of the Russian Academy of Sciences ». Arkhangelsk, 2020. P. 90-92.

3. Patrakeeva V.P. Cytokine regulation of proliferative activity of peripheral blood cells. Human ecology. 2015. No. 12. P. 28-33.

4. A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation / Engeroff P., Fellmann M., Yerly D. [et al.] // Journal of Allergy and Clinical Immunology. 2018. Vol. 142. Is. 2. pp. 557-568. DOI: 10.1016/j.jaci.2017.09.024.

5. CD3+ and CD8+ tumor-infiltrating lymphocytes (TILs) as markers of improved prognosis in high-grade serous ovarian cancer / Kahn R.M., Matrai C., Quinn A.S. [et al.] // Gynecologic Oncology. 2019. Vol. 154. Supp. pp. 68. DOI: 10.1016/j.ygyno.2019.04.162.

6. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages / De Nardo D.G., Barreto J.B., Andreu P. [et al.] // Cancer Cell. 2019. Vol. 16. Is. 2. pp. 91-102. DOI: 10.1016/j.ccr.2009.06.018.

7. CD4 + CD25 + regulatory T cells in tumor immunity / Chen X., Du Y., Lin X.-Q. [et al.] // International Immunopharmacology. 2016. Vol. 34. Is. 2 B. pp. 244-249. DOI: 10.1016/j.intimp.2016.03.009.

8. Central role of IL-6 and MMP-1 for cross talk between human intestinal mast cells and human intestinal fibroblasts / Montier Y., Lorentz A., Krämer S. [et al.] // Immunobiology. 2012. Vol. 217. Is. 9. pp. 912-919. DOI: 10.1016/j.imbio.2012.01.003.

9. Characterization of autoantibodies, immunophenotype and autoimmune disease in a prospective cohort of patients with idiopathic CD4 lymphocytopenia / Cudrici C. D., Boulougoura A., Sheikh V. [et al.] // Clinical Immunology. 2021. Vol. 224. pp. 108664. DOI: 10.1016/j.clim.2021.108664.

10. Chaudhary B., Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting // Vaccines. 2016. Vol. 4. pp. 28. DOI: 10.3390/vaccines4030028.

11. Chen D.S., Mellman I. Elements of cancer immunity and the cancer–immune set point // Nature. 2017. Vol. 541. Is. 7637. pp. 321-330. DOI: 10.1038/nature21349.

12. Clinicopathological characteristics of adult T cell leukemia/lymphoma / Chen Y.P., Wu Z.J., Liu W. [et al.] // Zhonghua Bing Li Xue Za Zhi. 2019. Vol. 48. Is. 1. pp. 11-16. DOI: 10.3760/cma.j.issn.0529-5807.2019.01.003.

13. Endothelial cells express NKG2D ligands and desensitize antitumor NK responses / Thompson T.W., Kim A.B., Li P.J. [et al.] // Elife. 2017. Vol. 6 . Article e30881. DOI: 10.7554/eLife.30881.

14. Judge S.J., Murphy W.J., Canter R.J. Characterizing the dysfunctional NK cell: assessing the clinical relevance of exhaustion, anergy and senescence // Front Cell Infect Microbiol. 2020. Vol. 10. Is. 49. DOI: 10.3389/fcimb.2020.0004.

15. Host deference against St.aureus biofilms by polymorphonuclear neutrophils / Stroh P., Günther F., Meyle E. [et al.] // Immunobiology. 2011. Vol. 216. Is. 3. pp. 351-357. DOI: 10.1016/j.imbio.2010.07.009.

16. Highlights of new type of intercellular communication / Pap E., Pállinger E., Pásztói M. [et al.] // Inflamm. Res. 2009. Vol. 58. Is. 1. pp. 1-8. DOI: 10.1007/s00011-008-8210-7.

17. IgE versus Ig G4 epitopes of the peanut allergen Ara hI in patients with severe allergy / Bøgh K.L., Nielsen H., Eiwegger T. [et al.] // Mol. Immunol. 2014. Vol. 58. Is. 2. pp. 169-176. DOI: 10.1016/j.molimm.2013.11.014.

18. Interleukin-6 regulates the expression of hypothalamic neuropeptides involved in body weight in a gender-dependent way / Señarís R. M., Trujillo M. L., Navia B. [et al.] // J. Neuroendocrinol. 2011. Vol. 23. Is. 8. pp. 675-686. DOI: 10.1111/j.1365-2826.2011.02158.x.

19. Keenan B.P., Fong L., Kelley R.K. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response // J. Immunother cancer. 2019. Vol. 7. Is. 1. p. 267. DOI: 10.1186/s40425-019-0749-z.

20. Lee A.Y.S., Reed J.H., Gordon T.P. Anti-Ro60 and anti-Ro52/TRIM21: Two distinct autoantibodies in systemic autoimmune diseases / Journal of Autoimmunity. 2021. Vol. 124. pp. 102724. DOI: 10.1016/j.jaut.2021.102724.

21. Ngwa D.N., Pathak A., Agrawal A. IL-6 regulates induction of C-reactive protein gene expression by activating STAT3 isoforms // Molecular Immunology. 2022. Vol. 146. Р. 50-56. DOI: 10.1016/j.molimm.2022.04.003.

22. Parasite antigen-driven basophils are a major source of IL-4 in humane filarial infections / Mitre E., Taylor R.T., Kubofcik J. [et al.] // J. Immunol. 2004. Vol. 172. Is. 4. pp. 2439-2445. DOI: 10.4049/jimmunol.172.4.2439.

23. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma / Wei S., Kryczek I., Zou L. [et al.] // Cancer Res. 2005. Vol. 65. Is.12. pp. 5020-5026. DOI: 10.1158/0008-5472.CAN-04-4043.

24. Phagocytic function of peripheral monocytes and neutrophils in ovarian cancer / Kovács A.R., Póka R., Szücs S. [et al.] // European Journal of Obstetrics & Gynecology and Reproductive Biology. 2019. Vol. 234. P. e21-e22. DOI: 10.1016/j.ejogrb.2018.08.198.

25. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo / Chen M.-L., Pittet M.J., Gorelik L. [et al.] K. Proc. // Natl. Acad. Sci. U S A. 2005. Vol. 102. Is. 2. pp. 419-424. DOI: 10.1073/pnas.0408197102.

26. Role of SOCS3 in enhanced acute-phase protein genes by neonatal macrophages in response to IL-6 / Chen X.-F., Wu J., Zhang Y.-D. [et al.] // Journal of Microbiology, Immunology and Infection. 2021. Vol. 54. Is.2. pp. 206-212. DOI: 10.1016/j.jmii.2019.05.005.

27. Rosenberg S.A., Yang J.C., Restifo N.P. Cancer immunotherapy: moving beyond current vaccines // Nat. Med. 2004. Vol. 10. Is. 9. pp. 909-915. DOI: 10.1038/nm1100.

28. Tanaka A., Sakaguchi S. Regulatory T cells in cancer immunotherapy // Cell Res. 2017. Vol. 1. pp. 109-118. DOI: 10.1038/cr.2016.151.

29. Targeting immunometabolism of neoplasms by interleukins: A promising immunotherapeutic strategy for cancer treatment / Zhu Z., Parikh P., Zhao H [et al.] // Cancer Letters. 2021. Vol. 518. pp. 94-101. DOI: 10.1016/j.canlet.2021.06.013.

30. The progress of immune checkpoint therapy in primary liver cancer / Zheng Y., Wang S., Cai J. [et al.] // Biochimica et Biophysica Acta (BBA). 2021. Vol. 1876. Is.2. 188638. DOI: doi: 10.1016/j.bbcan.2021.188638.

31. Tumor-associated CD163+ macrophage as a predictor of tumor spread through air spaces and with CD25+ lymphocyte as a prognostic factor in resected stage I lung adenocarcinoma / Yoshida C., Kadota K., Yamada K. [et al.] // Lung Cancer. 2022. Vol. 167. pp. 34-40. DOI: 10.1016/j.lungcan.2022.03.016.

32. Tumour infiltrating lymphocytes in early breast cancer: High levels of CD3, CD8 cells and Immunoscore® are associated with pathological CR and time to progression in patients undergoing neo-adjuvant chemotherapy / Rapoport B.L., Galon J., Nayler S. [et al.]// Annals of Oncology. 2020. Vol. 31. Supp. 4. pp. S1112. DOI: 10.1016/j.annonc.2020.08.1290.

33. Walker J.A., McKenzie A.N.J. TH2 cell development and function // Nat. Rev. Immunol. 2018. Vol. 18. Is. 2. pp. 121-133. DOI: 10.1038/nri.2017.118.

34. Weinberg R.A. The Biology of cancer. N.- Y.: Carl and Since, 2013. 960 p.

35. Xiao Z.X., Miller J.S, Zheng S.G. Autoimmunity Reviews. An updated advance of autoantibodies in autoimmune diseases // Autoimmun Rev. 2021. Vol. 20. Is. 2. pp. 102743. DOI: 10.1016/j.autrev.2020.102743.


Review

For citations:


Dobrodeeva L.K., Patrakeeva V.P., Strekalovskaya M.Yu. Dependence of immune reactions on the stage of oncological disease. Yakut Medical Journal. 2022;(2):60-64. https://doi.org/10.25789/YMJ.2022.78.16

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-1905 (Print)
ISSN 2312-1017 (Online)