Endocrine mechanisms of bronchial control in patients with bronchial asthma
https://doi.org/10.25789/YMJ.2019.67.29
Abstract
The analysis of works published according to the results of studies by foreign and domestic authors on the role of the pulmonary neuroendocrine system in the functioning of the bronchi is carried out. Modern ideas about the endocrine mechanisms of bronchial control in patients with bronchial asthma are presented. A brief description of pro-inflammatory and anti-inflammatory peptide substances produced in the bronchopulmonary system is given. The possibilities of using some peptide substances as drugs in the treatment of patients with bronchial asthma are indicated.
About the Authors
N. U. ChamsutdinovRussian Federation
Chamsutdinov Nabi U., MD, Professor, Head of the Faculty Therapy Department
Makhachkala, Republic of Dagestan
mobile phone: 89604094661 (contact with editorial staff)
A. A. Guseynov
Russian Federation
Guseynov Ali A., MD, assoc., Professor, Department of Faculty Therapy
Makhachkala, Republic of Dagestan
J. N. Abdulmanapova
Russian Federation
Abdulmanapova Jariyat N., PhD, assistant Department of Faculty Therapy
Makhachkala, Republic of Dagestan
References
1. Chamsutdinov N.U. Assessment of the immune and endocrine systems of the gastrointestinal tract in patients with bronchial asthma / N.U. Chamsutdinov, D.N. Abdulmanapova // Bulletin of the Dagestan State Medical Academy. - 2018. - №27(2). - P.5-12.
2. Absence of immunoreactive vasoactive intestinal polypeptide in tissue from the lungs of patients with asthma / S. Ollerenshaw, D. Jarvis, A. Woolcock [et al.]. URL: http://www.biomedsearch.com/nih/Absence-immunoreactive-vasoactive-intestinal-polypeptide/2610738.html (access date: 02.11.2018). DOI: 10.1056/nejm198905113201904.
3. Adrenomedullin: A novel peptide hormone / P. Patel, A. Mishra, A.A. Sheikh // Journal of Pharmacognosy and Phytochemistry. - 2017. - Vol. 6 (6). - P. 2068-2073. URL: http://www.phytojournal.com/archives/2017/vol6issue6/PartAC/6-6-72-527.pdf (access date: 29.10.2018).
4. Airway expression of calcitonin gene-related peptide in T-cell peptide-induced late asthmatic reactions in atopics / A.B. Kay, F.R. Ali, L.G. Heaney [et al.] // Allergy. – 2007. – Vol. 62, №5. - P.495-503. DOI: 10.1111/j.1398-9995.2007.01342.x.
5. Atanasova K.R. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis / K.R. Atanasova, L.R. Reznikov // Respiratory Research. - 2018. - Vol. 19. URL: https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-018-0846-4 (access date: 25.10.2018). DOI: 10.1186/s12931-018-0846-4.
6. Biochemical and pharmacological activities of SR 144190, a new potent non-peptide tachykinin NK2 receptor antagonist / X. Emonds-Alt, C. Advenier, C. Cognon [et al.]. URL: https://www.neuropeptidesjournal.com/article/S0143-4179(97)90039-1/pdf. (access date: 12.10.2018). DOI: 10.1016/s0143-4179(97)90039-1.
7. Brain natriuretic peptide: Much more than a biomarker / L. Calzetta, A. Orlandi, C. Page // International Journal of Cardiology. - 2016. - Vol. 221. - P.1031-1038. DOI: 10.1016/j.ijcard.2016.07.109.
8. Chemical synthesis and formulation design of a PEGylated vasoactive intestinal peptide derivative with improved metabolic stability / S. Onoue, T. Matsu, M. Kato [et al.] // European Journal of Pharmaceutical Sciences. – 2013. – Vol. 49, №3. – P. 382-389. DOI: 10.1016/j.ejps.2013.04.009.
9. Conjugated alpha-alumina nanoparticle with vasoactive intestinal peptide as a Nano-drug in treatment of allergic asthma in mice / S.S. Athari, Z. Pourpak, G. Folkerts [et al.] // European Journal of Pharmacology. – 2016. – Vol. 791. – P. 811-820. DOI: 10.1016/j.ejphar.2016.10.014.
10. Contractile effect of bombesin on Guinea pig lung in vitro: involvement of gastrin-releasing peptide-preferring receptors / E. Lach, E.B. Haddad, J.P. Gies. URL: https://www.ncbi.nlm.nih.gov/pubmed/8381599 (access date: 17.10.2018). DOI: 10.1152/ajplung.1993.264.1.l80.
11. Delgado M. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions / M. Delgado, D. Ganea // Amino Acids. – 2013. – Vol. 45, №1. - P. 25-39. DOI: 10.1007/s00726-011-1184-8.
12. Distribution of Substance P-Immunoreactive and Calcitonin gene-related peptide-immunoreactive nerves in normal human lungs / T. Komatsu, M. Yamamoto, K. Shimokata [et al.] URL: https://www.karger.com/Article/Abstract/235449 (access date: 06.11.2018). DOI: 10.1159/000235449.
13. Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstr iction in asthma patients / G.F. Joos, W. Vincken, R. Louis [et al.] URL: http://erj.ersjournals.com/content/23/1/76. (access date: 07.11.2018). DOI: 10.1183/09031936.03.00101902.
14. Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma / J.D. Boot, S. de Haas, S. Tarasevych [et al.]. URL: https://www.atsjournals.org/doi/full/10.1164/rccm.200608-1186OC (access date: 18.10.2018). DOI: 10.1164/rccm.200608-1186oc.
15. Expression and function of human hemokinin-1 in human and guinea pig airways / S. Grassin-Delyle, E. Naline, A. Buenestado [et al.] // Respiratory Research. – 2010. – Vol. 11, №1. URL: http://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-11-139 (access date: 01.10.2018). DOI: 10.1186/1465-9921-11-139.
16. Global Strategy for Asthma Management and Prevention. 2018. 160 p. URL: http://ginasthma.org/2018-gina-report-global-strategy-for-asthma-management-and-prevention/ (access date: 25.09.2018).
17. Goldie R.G. A possible mediator role for endothelin-1 in respiratory disease / R.G. Goldie, L.B. Fernandes. URL: http://www.biomedsearch.com/nih/possible-mediator-role-endothelin-1/10949880.html (access date: 11.10.2018).
18. Increased serum levels of chromogranin A in male smokers with airway obstruction / S. Sorhaug, A. Langhammer, H.L. Waldum [et al.]. URL: http://erj.ersjournals.com/content/28/3/542 (access date: 28.10.2018). DOI: 10.1183/09031936.06.00092205.
19. Interactions of tachykinin receptor antagonists with lipopolysaccharide-induced airway inflammation in mice / M. Veron, I. Guenon, S. Nenan [et al.]. URL: http://booksc.org/book/9325352/b370ea (access date: 24.10.2018). DOI: 10.1111/j.1440-1681.2004.04061.x.
20. Lu Y. An association between neuropeptide Y levels and leukocyte subsets in stress-exacerbated asthmatic mice / Y. Lu, R.C. Ho // Neuropeptides. – 2016. – Vol. 57. - P. 53-58. DOI: 10.1016/j.npep.2015.11.091.
21. Multifaces of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP): From Neuroprotection and Energy Homeostasis to Re spiratory and Cardiovascular Systems / A. Diané, G.W. Payne, S.L. Gray // Journal of Metabolic Syndrome. – 2014. – Vol. 3(4). URL: http://www.omicsonline.org/open-access/multifaces-of-pituitary-adenylate-cyclaseactivating-polypeptide-pacap-2167-0943.1000162.pdf (access date: 30.09.2018). DOI: 10.4172/2167-0943.1000162.
22. Neurogenic mechanisms in bronchial inflammatory diseases / D.A. Groneberg, D. Quarcoo, N. Frossard [et al.] URL: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1398-9995.2004.00665.x (access date: 29.10.2018). DOI: 10.1111/j.1398-9995.2004.00665.x.
23. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions / E. Pinter, G. Pozsgai, Z. Hajna [et al.] // British Journal of Clinical Pharmacology. - 2014. - Vol. 77, №1. - P.5–20. DOI: 10.1111/bcp.12097.
24. NPY and NPY receptors in airway structural and inflammatory cells in allergic asthma / T.O. Makinde, R. Steininger, D.K. Agrawal // Experimental and Molecular Pathology. – 2013. – Vol. 94, №1. - P. 45-50. DOI: 10.1016/j.yexmp.2012.05.009.
25. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs / M.M. Hewitt, G. Adams, S.B. Mazzone [et al.] // J. Pharmacol. Exp. Ther. 2016. - Vol.357, №3. - P. 620-628. DOI: 10.1124/jpet.115.230383.
26. Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans / M. Yi, H. Li, Z. Wu [et al.] // Cellular Physiology and Biochemistry. – 2018. – Vol.45, №1. - P. 88-107. DOI: 10.1159/000486225.
27. Pulmonary peptidergic innervation remodeling and development of airway hyperresponsiveness induced by RSV persistent infection / Y.R. Tan, T. Yang, S.P. Liu [et al.] // Peptides. - 2008. - Vol. 29, №1. - P. 47-56. DOI: 10.1016/j.peptides.2007.10.020.
28. Role of MUC5AC in the pathogenesis of exercise-induced bronchoconstriction / T.S. Hallstrand, J.S. Debley, F.M. Farin [et. al.] // Journal of Allergy and Clinical Immunology. - 2007. - Vol. 119, №5. - P. 1092-1098. DOI: 10.1016/j.jaci.2007.01.005.
29. Silencing nociceptor neurons reduces allergic airway inflammation / S. Talbot, R.E. Abdulnour, P.R. Burkett [et al.] // Neuron. - 2015. - Vol. 87, №2. - P. 341-354. DOI: 10.1016/j.neuron.2015.06.007.
30. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease / M.S. Steinhoff, B. von Mentzer, P. Geppetti [et al.] // Physiological Reviews. - 2014. - Vol. 94, №1. - P. 265-301. DOI: 10.1152/physrev.00031.2013.
31. The triple neurokinin-receptor antagonist CS-003 inhibits neurokinin A-induced bronchoconstriction in patients with asthma. / V. Schelfhout, R. Louis, W. Lenz [et al.]. URL: https://orbi.uliege.be/bitstream/2268/17699/2/The%20triple%20neurokinin-receptor%20antagonist%20CS-003%20inhibits%20neurokinin%20A-induced%20bronchoconstriction%20in%20patients.pdf (access date: 08.11.2018). DOI: 10.1016/j.pupt.2005.10.007.
32. The effect of the tachykinin NK(2) receptor antagonist MEN11420 (nepadutant) on neurokinin A-induced bronchoconstriction in asthmatics / V. Schelfhout, V. Van De Velde, C. Maggi [et al.] // Therapeutic Advances in Respiratory Disease. - 2009. - Vol. 3. - P. 219-226. DOI: 10.1177/1753465809349741.
33. Tracheal microenvironment, ANP metabolism and airway tone / Q. Wang, K. Jiang, W. Zhang [et al.] // Journal Science Bulletin. 2016. – Vol. 61, №20. - P. 1551–1554. DOI: 10.1007/s11434-016-1170-3.
34. Upregulation of mas-related G protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1 / W. Manorak, C. Idahosa, K. Gupta [et al.] // Respiratory Research. - 2018. - Vol.19, №1. URL: http://respiratory-research.biomedcentral.com/articles/10.1186/s12931-017-0698-3 (access date: 01.10.2018). DOI: 10.1186/s12931-017-0698-3.
Review
For citations:
Chamsutdinov N.U., Guseynov A.A., Abdulmanapova J.N. Endocrine mechanisms of bronchial control in patients with bronchial asthma. Yakut Medical Journal. 2019;(3):104-109. https://doi.org/10.25789/YMJ.2019.67.29