Эндокринные механизмы контроля бронхов у пациентов с бронхиальной астмой
https://doi.org/10.25789/YMJ.2019.67.29
Аннотация
Проведен анализ работ, опубликованных по результатам исследований зарубежных и отечественных авторов о роли легочной нейроэндокринной системы в функционировании бронхов. Приведены современные представления об эндокринных механизмах контроля бронхов у пациентов с бронхиальной астмой. Дана краткая характеристика провоспалительных и противовоспалительных пептидных субстанций, вырабатывающихся в бронхолегочной системе. Указаны возможности использования некоторых пептидных субстанций в качестве лекарственных средств в лечении пациентов с бронхиальной астмой.
Об авторах
Н. У. ЧамсутдиновРоссия
Чамсутдинов Наби Умматович – д.м.н., проф., зав. кафедрой
г. Махачкала
А. А. Гусейнов
Россия
Гусейнов Али Ажубович – д.м.н., доцент, проф.
г. Махачкала
Д. Н. Абдулманапова
Россия
Абдулманапова Джарият Набиевна – к.м.н., доцент, ассистент кафедры
г. Махачкала
Список литературы
1. Чамсутдинов Н.У. Оценка состояния иммунной и эндокринной систем желудочно-кишечного тракта у пациентов с бронхиальной астмой / Н.У. Чамсутдинов, Д.Н. Абдулманапова // Вестник Дагестанской государственной медицинской академии. - 2018. – №27(2). - С. 5-12.
2. Absence of immunoreactive vasoactive intestinal polypeptide in tissue from the lungs of patients with asthma / S. Ollerenshaw, D. Jarvis, A. Woolcock [et al.]. URL: http://www.biomedsearch.com/nih/Absence-immunoreactive-vasoactive-intestinal-polypeptide/2610738.html (access date: 02.11.2018). DOI: 10.1056/nejm198905113201904.
3. Adrenomedullin: A novel peptide hormone / P. Patel, A. Mishra, A.A. Sheikh // Journal of Pharmacognosy and Phytochemistry. - 2017. - Vol. 6 (6). - P. 2068-2073. URL: http://www.phytojournal.com/archives/2017/vol6issue6/PartAC/6-6-72-527.pdf (access date: 29.10.2018).
4. Airway expression of calcitonin gene-related peptide in T-cell peptide-induced late asthmatic reactions in atopics / A.B. Kay, F.R. Ali, L.G. Heaney [et al.] // Allergy. – 2007. – Vol. 62, №5. - P.495-503. DOI: 10.1111/j.1398-9995.2007.01342.x.
5. Atanasova K.R. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis / K.R. Atanasova, L.R. Reznikov // Respiratory Research. - 2018. - Vol. 19. URL: https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-018-0846-4 (access date: 25.10.2018). DOI: 10.1186/s12931-018-0846-4.
6. Biochemical and pharmacological activities of SR 144190, a new potent non-peptide tachykinin NK2 receptor antagonist / X. Emonds-Alt, C. Advenier, C. Cognon [et al.]. URL: https://www.neuropeptidesjournal.com/article/S0143-4179(97)90039-1/pdf. (access date: 12.10.2018). DOI: 10.1016/s0143-4179(97)90039-1.
7. Brain natriuretic peptide: Much more than a biomarker / L. Calzetta, A. Orlandi, C. Page // International Journal of Cardiology. - 2016. - Vol. 221. - P.1031-1038. DOI: 10.1016/j.ijcard.2016.07.109.
8. Chemical synthesis and formulation design of a PEGylated vasoactive intestinal peptide derivative with improved metabolic stability / S. Onoue, T. Matsu, M. Kato [et al.] // European Journal of Pharmaceutical Sciences. – 2013. – Vol. 49, №3. – P. 382-389. DOI: 10.1016/j.ejps.2013.04.009.
9. Conjugated alpha-alumina nanoparticle with vasoactive intestinal peptide as a Nano-drug in treatment of allergic asthma in mice / S.S. Athari, Z. Pourpak, G. Folkerts [et al.] // European Journal of Pharmacology. – 2016. – Vol. 791. – P. 811-820. DOI: 10.1016/j.ejphar.2016.10.014.
10. Contractile effect of bombesin on Guinea pig lung in vitro: involvement of gastrin-releasing peptide-preferring receptors / E. Lach, E.B. Haddad, J.P. Gies. URL: https://www.ncbi.nlm.nih.gov/pubmed/8381599 (access date: 17.10.2018). DOI: 10.1152/ajplung.1993.264.1.l80.
11. Delgado M. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions / M. Delgado, D. Ganea // Amino Acids. – 2013. – Vol. 45, №1. - P. 25-39. DOI: 10.1007/s00726-011-1184-8.
12. Distribution of Substance P-Immunoreactive and Calcitonin gene-related peptide-immunoreactive nerves in normal human lungs / T. Komatsu, M. Yamamoto, K. Shimokata [et al.] URL: https://www.karger.com/Article/Abstract/235449 (access date: 06.11.2018). DOI: 10.1159/000235449.
13. Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstr iction in asthma patients / G.F. Joos, W. Vincken, R. Louis [et al.] URL: http://erj.ersjournals.com/content/23/1/76. (access date: 07.11.2018). DOI: 10.1183/09031936.03.00101902.
14. Effect of an NK1/NK2 receptor antagonist on airway responses and inflammation to allergen in asthma / J.D. Boot, S. de Haas, S. Tarasevych [et al.]. URL: https://www.atsjournals.org/doi/full/10.1164/rccm.200608-1186OC (access date: 18.10.2018). DOI: 10.1164/rccm.200608-1186oc.
15. Expression and function of human hemokinin-1 in human and guinea pig airways / S. Grassin-Delyle, E. Naline, A. Buenestado [et al.] // Respiratory Research. – 2010. – Vol. 11, №1. URL: http://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-11-139 (access date: 01.10.2018). DOI: 10.1186/1465-9921-11-139.
16. Global Strategy for Asthma Management and Prevention. 2018. 160 p. URL: http://ginasthma.org/2018-gina-report-global-strategy-for-asthma-management-and-prevention/ (access date: 25.09.2018).
17. Goldie R.G. A possible mediator role for endothelin-1 in respiratory disease / R.G. Goldie, L.B. Fernandes. URL: http://www.biomedsearch.com/nih/possible-mediator-role-endothelin-1/10949880.html (access date: 11.10.2018).
18. Increased serum levels of chromogranin A in male smokers with airway obstruction / S. Sorhaug, A. Langhammer, H.L. Waldum [et al.]. URL: http://erj.ersjournals.com/content/28/3/542 (access date: 28.10.2018). DOI: 10.1183/09031936.06.00092205.
19. Interactions of tachykinin receptor antagonists with lipopolysaccharide-induced airway inflammation in mice / M. Veron, I. Guenon, S. Nenan [et al.]. URL: http://booksc.org/book/9325352/b370ea (access date: 24.10.2018). DOI: 10.1111/j.1440-1681.2004.04061.x.
20. Lu Y. An association between neuropeptide Y levels and leukocyte subsets in stress-exacerbated asthmatic mice / Y. Lu, R.C. Ho // Neuropeptides. – 2016. – Vol. 57. - P. 53-58. DOI: 10.1016/j.npep.2015.11.091.
21. Multifaces of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP): From Neuroprotection and Energy Homeostasis to Re spiratory and Cardiovascular Systems / A. Diané, G.W. Payne, S.L. Gray // Journal of Metabolic Syndrome. – 2014. – Vol. 3(4). URL: http://www.omicsonline.org/open-access/multifaces-of-pituitary-adenylate-cyclaseactivating-polypeptide-pacap-2167-0943.1000162.pdf (access date: 30.09.2018). DOI: 10.4172/2167-0943.1000162.
22. Neurogenic mechanisms in bronchial inflammatory diseases / D.A. Groneberg, D. Quarcoo, N. Frossard [et al.] URL: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1398-9995.2004.00665.x (access date: 29.10.2018). DOI: 10.1111/j.1398-9995.2004.00665.x.
23. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions / E. Pinter, G. Pozsgai, Z. Hajna [et al.] // British Journal of Clinical Pharmacology. - 2014. - Vol. 77, №1. - P.5–20. DOI: 10.1111/bcp.12097.
24. NPY and NPY receptors in airway structural and inflammatory cells in allergic asthma / T.O. Makinde, R. Steininger, D.K. Agrawal // Experimental and Molecular Pathology. – 2013. – Vol. 94, №1. - P. 45-50. DOI: 10.1016/j.yexmp.2012.05.009.
25. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs / M.M. Hewitt, G. Adams, S.B. Mazzone [et al.] // J. Pharmacol. Exp. Ther. 2016. - Vol.357, №3. - P. 620-628. DOI: 10.1124/jpet.115.230383.
26. Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans / M. Yi, H. Li, Z. Wu [et al.] // Cellular Physiology and Biochemistry. – 2018. – Vol.45, №1. - P. 88-107. DOI: 10.1159/000486225.
27. Pulmonary peptidergic innervation remodeling and development of airway hyperresponsiveness induced by RSV persistent infection / Y.R. Tan, T. Yang, S.P. Liu [et al.] // Peptides. - 2008. - Vol. 29, №1. - P. 47-56. DOI: 10.1016/j.peptides.2007.10.020.
28. Role of MUC5AC in the pathogenesis of exercise-induced bronchoconstriction / T.S. Hallstrand, J.S. Debley, F.M. Farin [et. al.] // Journal of Allergy and Clinical Immunology. - 2007. - Vol. 119, №5. - P. 1092-1098. DOI: 10.1016/j.jaci.2007.01.005.
29. Silencing nociceptor neurons reduces allergic airway inflammation / S. Talbot, R.E. Abdulnour, P.R. Burkett [et al.] // Neuron. - 2015. - Vol. 87, №2. - P. 341-354. DOI: 10.1016/j.neuron.2015.06.007.
30. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease / M.S. Steinhoff, B. von Mentzer, P. Geppetti [et al.] // Physiological Reviews. - 2014. - Vol. 94, №1. - P. 265-301. DOI: 10.1152/physrev.00031.2013.
31. The triple neurokinin-receptor antagonist CS-003 inhibits neurokinin A-induced bronchoconstriction in patients with asthma. / V. Schelfhout, R. Louis, W. Lenz [et al.]. URL: https://orbi.uliege.be/bitstream/2268/17699/2/The%20triple%20neurokinin-receptor%20antagonist%20CS-003%20inhibits%20neurokinin%20A-induced%20bronchoconstriction%20in%20patients.pdf (access date: 08.11.2018). DOI: 10.1016/j.pupt.2005.10.007.
32. The effect of the tachykinin NK(2) receptor antagonist MEN11420 (nepadutant) on neurokinin A-induced bronchoconstriction in asthmatics / V. Schelfhout, V. Van De Velde, C. Maggi [et al.] // Therapeutic Advances in Respiratory Disease. - 2009. - Vol. 3. - P. 219-226. DOI: 10.1177/1753465809349741.
33. Tracheal microenvironment, ANP metabolism and airway tone / Q. Wang, K. Jiang, W. Zhang [et al.] // Journal Science Bulletin. 2016. – Vol. 61, №20. - P. 1551–1554. DOI: 10.1007/s11434-016-1170-3.
34. Upregulation of mas-related G protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1 / W. Manorak, C. Idahosa, K. Gupta [et al.] // Respiratory Research. - 2018. - Vol.19, №1. URL: http://respiratory-research.biomedcentral.com/articles/10.1186/s12931-017-0698-3 (access date: 01.10.2018). DOI: 10.1186/s12931-017-0698-3.
Рецензия
Для цитирования:
Чамсутдинов Н.У., Гусейнов А.А., Абдулманапова Д.Н. Эндокринные механизмы контроля бронхов у пациентов с бронхиальной астмой. Якутский медицинский журнал. 2019;(3):104-109. https://doi.org/10.25789/YMJ.2019.67.29
For citation:
Chamsutdinov N.U., Guseynov A.A., Abdulmanapova J.N. Endocrine mechanisms of bronchial control in patients with bronchial asthma. Yakut Medical Journal. 2019;(3):104-109. https://doi.org/10.25789/YMJ.2019.67.29