N.N. Gotovtsev, N.A. Barashkov, V.G. Pshennikova, M.V. Pak, K.S. Loskutova, S.A. Fedorova.

PREVALENCE OF THE EAST ASIAN CAGA AND WESTERN CAGA GENES OF HELICOBACTER PYLORY IN YAKUTIA

DOI 10.25789/YMJ.2021.74.16

There are several alleles of the *cagA* gene, in which a change in the carboxyl end of its protein is the main distinguishing feature between different alleles. Polymorphisms at the C-terminus occur in the so-called EPIYA region and usually involve changes in amino acid sequences flanking repetitive five amino acid sequences – Glu-Pro-Ile-Tyr-Ala. In Yakutia, the estimation of prevalence of the East Asian *cagA* and Western *cagA* genes in *Helicobacter pylori* strains has not been studied. The aim of this work is to analysis of the prevalence of the Western *cagA* and East Asian *cagA* genes among *Helicobacter pylori* strains in Yakutia. The study sample consisted of 30 *Helicobacter pylori* DNA samples isolated from biopsy specimens of patients with gastroduodenal diseases. As a result of the endoscopic and histological examination, the presence of *Helicobacter pylori* infection was confirmed in 30 patients. The Western *cagA* was identified in 12 of 30 samples (40%). In 18 samples (60%) the *cagA* gene variant was not identified, since it did not belong to either the Western *cagA* or the East Asian *cagA*. The analysis of the prevalence of East Asian and Western *cagA* among *Helicobacter pylori* strains in Yakutia revealed that the prevailing variant of the *cagA* gene is the Western *cagA* and the

East Asian *cagA* was not found in none of the samples. In 60% of cases, the samples did not belong to either the Western or the East Asian *cagA* gene, which may indicate the presence of their own *cagA* gene sequence among *Helicobacter pylori* strains in Yakutia.

Key words: Helicobacter pylori, East Asian cagA, Western cagA, EPIYA motif, Yakutia

GOTOVTSEV Nyurgun Naumovich - Scientific researcher, laboratory of molecular genetics, Federal State Budgetary Scientific Institution "Yakut Science Centre of complex medical problems". Address: 677000, Sakha Republic, Yakutsk, Yaroslavsky st. 6/3. Phone: 89141062015. e-mail: Donzcrew@mail. https://orcid.org/0000-0002-4710-1592; BARASHKOV Nikolay Alekseevich - Candidate of biological sciences, Leading Researcher of laboratory of molecular genetics, Federal State Budgetary Scientific Institution "Yakut Science Centre of complex medical problems". Address: 677000, Sakha Republic, Yakutsk, Yaroslavsky st. 6/3. Phone: 8-(4112) 31-93-94; e-mail: barashkov2004@mail.ru https://orcid. org/0000-0002-6984-7934; PSHENNIKOVA Vera Gennadievna - Candidate of Biological Sciences, Leading Researcher, Head of laboratory of Populational Genetics, Federal State Budgetary Scientific Institution "Yakut Science Centre of complex medical problems". Address: 677000, Sakha Republic, Yakutsk, Yaroslavsky st. 6/3. Phone: 8-(4112) 31-93-94, e-mail: pshennikovavera@mail.ru https:// orcid.org/0000-0001-6866-9462; PAK Maria Vladimirovna - postgraduate student of the Medical institute, Federal State Autonomous Educational Institution of Higher Education "North-Eastern Federal University M.K. Ammosov". Address: 677013, Sakha Republic, Yakutsk, Oyunskogo st. 27, e-mail: pakmv@ mail.ru; LOSKUTOVA Kiunnai Savvichna -

Candidate of Medical Science, Associate Pro-

fessor of the Medical institute, Federal State

Autonomous Educational Institution of Higher

Education "North-Eastern Federal Universi-

ty M.K. Ammosov". Address: 677013, Sakha

Republic, Yakutsk, Oyunskogo st. 27, e-mail:

loskutovaks@mail.ru; FEDOROVA Sardana Arkadievna – Doctor of biological sciences,

Head of the Research Laboratory of Molecular

Biology Institute of Natural Sciences, Feder-

al State Autonomous Educational Institution

of Higher Education "North-Eastern Federal

University M.K. Ammosov". Address: 677010,

Sakha Republic, Yakutsk, Kulakovsky st. 46.,

e-mail: sardaanafedorova@mail.ru https://or-

cid.org/0000-0002-6952-3868

Introduction. Helicobacter pylori (H. pylori) - is a gram-negative, spiral-shaped bacterium that colonizes the gastric mucosa of the human stomach and duodenum, causing various gastroduodenal diseases (chronic gastritis, gastric and duodenal ulcers, MALT lymphoma, and stomach cancer) [5, 20]. The family is the basic unit of transmission for H. pylori. Children often become infected with a strain that is genetically identical to one of the parent's strain [23]. Consequently, transmission is likely to occur more frequently in the family or among infants. Once the infection has entered the human body, subsequent infection with other strains of H. pylori becomes unlikely [11]. According to some estimates, more than half of the world's population is infected with H. pylori. H. pylori infection is often not clinically apparent [19]. Only a certain part of the infected (20%) over time develop clinically significant symptoms of the disease: chronic gastritis, gastric and duodenal ulcer, stomach cancer [1, 24].

H. pylori is genetically more diverse than other types of bacteria. The characteristics of DNA samples and the sequence of any different DNA fragments almost always differ between independent pairs of isolates, and a comparison of the genomes of two strains in one study showed that 7% of genes are specific for each strain [23]. H. pylori DNA sequences can be used to distinguish between closely related human populations and are superior in this respect to classical human genetic markers [13, 28].

There are several alleles of the *cagA* gene, in which a change in the carboxyl

end of its protein is the main distinguishing feature between different alleles. Polymorphisms at the C-terminus occur in the so-called EPIYA region and usually involve changes in amino acid sequences flanking repeated amino acid sequences - Glu-Pro-Ile-Tyr-Ala. In 2006, based on the deep sequence of the cagA gene was built a phylogenetic tree, and it was noted that the most spread motifs are EPIYA -A, -B, -C and -D and are in two different combinations by geographic location [4, 6, 12, 17]. The combination of EPIYA-A, -B and -C motifs (identified up to five motifs EPIYA-C) belongs to the Western cagA, while the combination of EPIYA-A, -B and -D motifs belongs to the East Asian cagA [6, 8, 9, 22]. The EPI-YA-C motif is found everywhere (Iran, India, Kazakhstan, Greece, Italy, Sweden, Ireland, USA, Costa Rica, and Colombia) [3], as well as from 8 to 40% in samples of Southeast Asian countries (Japan, China, Korea, Thailand and Malaysia) [4]. The EPIYA-D motifs were clustered separately from strains isolated in Europe and found only in the countries of Southeast Asia (Malaysia, Vietnam, Thailand, Korea, China, and southern Japan) [14, 25, 29]. Subsequently, it was noted that both East Asian cagA and Western cagA circulate in Southeast Asia [26, 27, 30]. Interesting, that Truong et al., in 2009 among the inhabitants of the Okinawa island, Japan, there were found H. pylori strains with the motif of the caqA gene is very similar to the "Western cagA" [14], but it forms separate isolated cluster, that locate between two branches on the phylogenetic tree - Western CagA и East Asian CagA [14]. Thus, authors

conclude, that there is Japanese subtype of the Western CagA from an enclave of populations from the Okinawa island (J-Western cagA subtype) [14, 19].

In Yakutia, the estimation of the frequency of the East Asian cagA and Western cagA genes in Helicobacter pylori strains has not been performed. The aim of this work is to analysis of the frequencies of the Western cagA and East Asian cagA gene strains of Helicobacter pylori in Yakutia.

Materials and methods. The study sample consisted of 30 H. pylori DNA samples isolated from biopsy specimens of patients with gastroduodenal diseases. The diagnosis was confirmed by histological and cytological methods in the endoscopy department of the Republican Hospital No. 1 - National Center of Medicine of the Ministry of Health of the Republic of Sakha (Yakutia). Among the studied patients 12 were women (40%). 18 were men (60%). Distribution by age - 21 patients were children and adolescents (from 8 to 17), 9 were adults (21-57 years old), the median age was 19.16 years. Among 30 patients 26 were Yakuts (86.6%), 2 were Russians (6.6%), 1 were Yukaghir (3.3%) and in one patient (3.3%) nationality was not established.

Genomic DNA of H. pylori was isolated from frozen gastrobiopsies of the examined patients by using phenol-chloroform extraction [16]. Fibrogastroduodenoscopy was performed in the morning on an empty stomach. Biopsy specimens were taken from the antrum in amount of 2-3 pieces during endoscopic examination using a GIF-P3 fiberscope ("Olympus", Japan). Obtained biopsies of the gastric mucosa were fixed in 10% formalin solution. Dewaxing of sections and staining with hematoxylin and eosin were carried out according to the standard technique. For targeted bacterioscopy, sections are stained according to the Romanovsky-Giemsa method. The study was performed under magnification x100, x400 and x1000 on microscope "Axioskop" ("Opton", Germany). The morphological criteria of chronic gastritis were assessed in accordance with the visual analogue scale according to the modified Sydney system (Houston, USA, 1996).

The genomic DNA of H. pylori was isolated from frozen gastrobiopsy specimens from patients with confirmed histological diagnosis of chronic gastritis and chronic gastritis with erosions and ulcers using phenol-chloroform extraction. To perform genotyping of the DNA fragments of the H. pylori East Asian cagA and Western cagA, oligonucleotide primer sequences were used that flank-

Sequences of oligonucleotide primers for two variants of the cagA gene: East Asian cagA and Western cagA of H. pylori

Gene	Sequences of oligonucleotide primers	Size (b.p.)
East Asian cagA	F: 5'- AAAGGAGTGGGCGGTTTCA-3' R: 5'- CCTGCTTGATTTGCCTCATCA-3'	91
Western cagA	F:5'- AGGCATGATAAAGTTGATGAT-3' R:5'- AAAGGTCCGCCGAGATCA-3'	88

ing required marker regions of this gene (Table 1). Visualization of PCR products was carried out using a gel-video documentation device ("Bio-Rad") using Image Lab ™ Software.

The surveys, provided by the framework of research work, were carried out strictly after the informed consent of participants, parents or legal representatives of minor patients. This study was approved by the local committee on biomedical ethics of the Yakutsk Scientific Center for Complex Medical Problems. Protocol No. 41 of November 12, 2015. Decision No. 5

Results and discussion. In the course of the endoscopic and histological examination, the presence of H. pylori infection was confirmed in 30 patients. Further, a molecular genetic analysis of the prevalence of H. pylori East Asian and Western cagA gene circulating in Yakutia was carried out. The East Asian cagA variant was not detected among 30 H. pylori DNA samples. The Western cagA was identified in 12 out of 30 samples (40%) (Fig. 1). 18 samples (60%) did not belong to either the Western cagA or the East Asian cagA.

It is known that on the basis of the

amino acid sequence of the repeated fragments of the EPIYA motif in the cagA gene, it is possible to estimate the geographical origin of the H. pylori studied strain. Repeated EPIYA-D motifs in the cagA gene were not detected in our samples, that indicates the absence of the East Asian cagA in studied sample. In our study, it was noted that H. pylori strains with Western cagA dominate in Yakutia, since have repeating EPIYA-C motifs.

It is known from previously published works that in almost all countries, except the countries of Southeast Asia, the Western cagA gene variant is the predominant with EPIYA-C motifs (Canada - 95%, USA - 98%, Mexico - 73.8%, Colombia - 83, 7%, France - 95%, Italy - 100%, Greece - 74.8%, Iran - 88.1%, Mongolia – 79.6%) [7, 10, 26, 31, 32, 34]. The East Asian cagA with EPIYA-D motifs dominates in the Japanese Islands (98.4%), the Korean Peninsula (86.6%), China (42%), as well as in some countries washed by the South China Sea (Vietnam - 56.7% and Malaysia - 37.2%) (Fig. 2) [4, 12, 26, 27, 30]. In other regions of Asia, the East Asian cagA with EPIYA-D motifs occurs with lower frequencies (Thailand - 14% and Mongolia

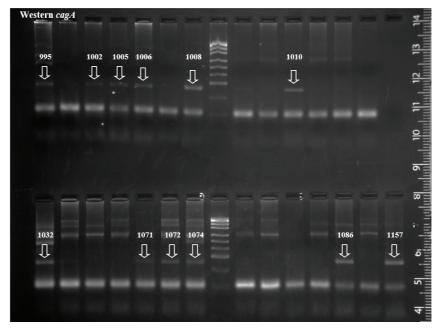
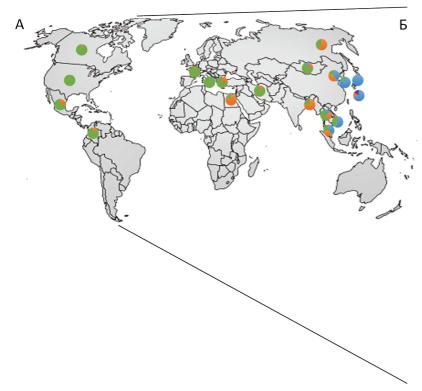



Fig 1. Electrophoregram of DNA samples with Western cagA gene (only positive samples are numbered).

Страна	Количество образцов	Western caqA	East Asian cagA	Неопределенный вариант <i>сааА</i>	Ссылка	
	ооразцов		_	, ,		
Япония	337	54	237	46	[5]	
(Окинава) Япония		16,1%	70,2% 64	13,6%		
лпония (Фукуи)	65	0%	98.4%	1.5%	[4]	
(Фукуи) Китай		27	59	55	[27]	
(Далянь)	141	19%	42%	39%		
Корея	45	6	39	0	[12]	
		13,3%	86,6%	0%		
Таиланд	50	28	7	15		
		56%	14%	30%		
Вьетнам	171	73	97	1	[26]	
		42,6%	56,7%	0,6%		
Малайзия	578	160	215	203	[30]	
		27,6%	37,2%	35,1%		
Иран	159	140	0	19	[10]	
		88,1%	0%	11,8%		
Египет	60	10	0	50	[23]	
		16,6%	0%	83,3%		
Бангладеш	78	19	0	59	[17]	
		24,3%	0%	75,6%		
Россия	30	12 40%	0 0%	18 60%	Данная	
(Якутия) Монголия	368	293	12	63	работа [34]	
		79,6%	3,2%	17.1%		
Греция	135	101	0	34	[31]	
		74,8%	0%	25,1%		
Италия	20	20	0	0	[26]	
		100%	0%	0%		
Франция	100	95	0	5		
		95%	0%	5%		
США	100	98	0	2		
		98%	0%	2%		
Канада	20	19	0	1		
		95%	0%	5%		
Колумбия	80	67	0	13	[7]	
		83,7%	0%	16,2%	[,,]	
Мексика	287	212	0	75	[32]	
		73,8%	0%	26,1%	[02]	

Fig 2. The prevalence of two cagA gene variants among H. pylori strains in the world: A – The distribution of East Asian cagA and Western cagA gene variants in the world; B – initial data; Note: blue color – East Asian cagA, green color – Western cagA, violet color – J-Western cagA, orange color – undefined cagA.

3.2%), giving way to the Western *cagA* with EPIYA-C motifs (Thailand – 56% and Mongolia 79.6%) [12, 34]. A rather high percentage of detection of the Western *cagA* in Yakutia (40%) is consistent with the available information about the European origin of most *H. pylori* lines (hpEurope haplotype – 89.3%) circulating in Yakutia, according to the three house-keeping genes *atpA*, *mutY*, *ppa* [2].

The presence of undefined variants of the *cagA* gene (60%) in Yakutia is most likely explained by the fact that the *cagA* gene may have a sequence that differs from the sequences of East Asian and Western *cagA*. Undefined variants of the *cagA* gene were also found in Mexico (26.1%), Colombia (16.2%), Greece (25.1%), Egypt (83.3%), Iran (11.8%), Bangladesh (75.6%), Thailand (30%), Malaysia (35.1%), China (39%), Mongolia (17.1%) and Japan (13.6%), which may also indicate about local variants that differ from the previously identified East Asian and Western *cagA*.

Conclusion. Analysis of the prevalence of East Asian and Western *cagA* among *Helicobacter pylori* strains in Yakutia revealed that the prevailing variant of the *cagA* gene is the Western *cagA* and the East Asian *cagA* was not found in none of the samples. In 60% of cases, the samples did not belong to either the

Western or the East Asian *cagA* gene, which may indicate about the presence of their own *cagA* gene sequence among *Helicobacter pylori* strains circulating in Yakutia

Acknowledgements. The study was supported by the YSC KMP "Study of the genetic structure and burden of hereditary pathology of populations in the Republic of Sakha (Yakutia)" and the basic part of the state assignment of the Ministry of Science and Education of the Russian Federation (FSRG-2020-0016).

The authors thanks to all the patients who took part in the study, as well as to the doctor of the endoscopy department of the Republican Hospital No. 1 Alekseeva M.P., Ph.D. Assistant Professor of the Medical Institute of NEFU Lekhanova S.N.

Литература

- 1. Момыналиев К.Т. Геномно-протеомная характеристика вариабельности *Helicobacter pylori*: Автореферат диссертации на соискание учёной степени д. б. н. / К.Т. Момыналиев // (03.00.04): М., 2009. 45 с. [Mominaliev KT. Genomic-proteomic characteristics of the variability of *Helicobacter pylori*: Author's abstract of the dissertation for the degree of Doctor of Biology (03.00.04): М. 2009. Р. 45. (In Russ.).].
- 2. Филогенетический анализ штаммов *Helicobacter pylori* циркулирующих в Якутии по данным трех генов домашнего хозяйства *atpA*,

титу, ppa / Борисова Т.В., Готовцев Н.Н., Барашков Н.А. [и др.] // Вестник Северо-Восточного федерального университета имени М.К. Аммосова. 2018. №5 (67). С.15-24. [Borisova TV, Gotovtsev NN, Barashkov NA et al. Phylogenetic analysis of Helicobacter pylori strains circulating in Yakutia according to three house-keeping genes atpA, mutY, ppa. Bulletin of the North-Eastern Federal University named after M.K. Ammosov. 2018. No. 5 (67). P. 15-24. (In Russ.).].

- 3. Y. Xia, Y. Yamaoka, Q. Zhu et al. A comprehensive sequence and disease correlation analyses for the C-terminal region of CagA protein of Helicobacter pylori. PLoS One. 2009;4:e7736.
- 4. T. Azuma, S. Yamazaki, A. Yamakawa et al. Association between diversity in the Src homology 2 domain-containing tyrosine phosphatase binding site of *Helicobacter pylori* CagA protein and gastric atrophy and cancer. *J Infect Dis* 2004; 189: 820–7. doi.org/10.1086/381782.
- 5. O. Matsunari, S. Shiota, R. Suzuki et al. Association between *Helicobacter pylori* virulence factors and gastroduodenal diseases in Okinawa, Japan. *J Clin Microbiol*. 2012;50(3). P. 876-883. doi:10.1128/JCM.05562-11.
- 6. H. Higashi, R. Tsutsumi, A. Fujita et al. Biological activity of the *Helicobacter pylori* virulence factor *cagA* is determined by variation in the tyrosine phosphorylation sites. *Proc Natl Acad Sci USA*. 2002;99:14428–14433. doi: 10.1073/pnas.222375399.
- 7. L.A. Sicinschi, P. Correa, R.M. Peek et al. CagA C-terminal variations in *Helicobacter pylori* strains from Colombian patients with gastric precancerous lesions. *Clin Microbiol Infect.* 2010. 16(4). P. 369-378. doi:10.1111/j.1469-0691.2009.02811.x.
- 8. M. Stein, F. Bagnoli, R. Halenbeck et al. c-Src/Lyn kinases activate *Helicobacter pylori*

cagA through tyrosine phosphorylation of the EPI-YA motifs. Mol Microbiol. 2002;43:971-980. doi: 10.1046/j.1365-2958.2002.02781.x.

- 9. R. Argent, M. Kidd, R. Owen et al. Determinants and consequences of different levels of cagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology. 2004;127:514-
- 10. M. Khaledi, N. Bagheri, M. Validi et al. Determination of CagA EPIYA motif in Helicobacter pylori strains isolated from patients with digestive disorder. Heliyon. 2020;6(9):e04971. Published 2020 Sep 23. doi:10.1016/j.heliyon.2020.e04971
- 11. Schmidt H.M., Goh K.L., Fock K.M. et al. Distinct cagA EPIYA motifs are associated with ethnic diversity in Malaysia and Singapore. Helicobacter 2009; 14: 256-63.
- 12. W. Boonyanugomol, W. Kongkasem, P. Palittapongarnpim et al. Distinct Genetic Variation of Helicobacter pylori cagA, vacA, oipA, and sabA Genes in Thai and Korean Dyspeptic Patients. Microbiology and Biotechnology Letters. 2018. 46 (3). P. 261-268. doi.org/10.4014/ mbl.1802.02002.
- 13. T. Wirth, X. Wang, B. Linz. Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci U S A. 2004;101:4746–4751.
- 14. Truong B.X., Mai V.T.C., Tanaka H. et al. Diverse characterization of the cagA gene of Helicobacter pylori strains in gastric cancer and peptic ulcer patients from Southern Vietnam. J Clin Microbiol 2009; 47: 4021-8.
- 15. M.C. Cortes, A. Yamakawa, C.R. Casingal et al. Diversity of the cagA gene of Helicobacter pylori strains from patients with gastroduodenal diseases in the Philippines. FEMS Immuno Med Microbiol 2010; 60: 90-7.
- 16. O.S. Antonova, N.A. Korneva, Yu. V. Belov et al. Effective Methods of Nucleic Acids extraction for Analysis in Molecular Biology (review). Scientific Instrument Making. 20 (1); 2010: 3-9.
- 17. C.K. Roy, S. Ahmed, A.B.N. Sattar. EPIYA Motif Polymorphism of cagA Gene in Helicobacter Pylori Isolated From Patients Suffering with Gastroduodenal Diseases. International Journal of

Medical Research Professionals. 2016: 1172.

- 18. T. Matsuhisa, Y. Yamaoka, T. Uchida. Gastric mucosa in Mongolian and Japanese patients with gastric cancer and Helicobacter pylori infection. World J Gastroenterol. 2015 Jul 21; 21(27):8408-17.
- 19. Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori cagA oncoprotein. Cancer Sci. 2011;102:36-43. doi: 10.1111/j.1349-7006.2010.01743.x.
- 20. Z. Chuan, Y. Nobutaka, Y.-LWu et al. Helicobacter pylori infection, glandular atrophy and intestinal metaplasia in superficial gastritis, gastric erosion, erosive gastritis, gastric ulcer and early gastric cancer. World J. Gastroenterol. 2005; 11(6): 791-796.
- 21. A. Covacci, J.L. Telford, G.D. Giudice. Helicobacter pylori virulence and genetic geography. Science. 1999; 284: 1328-1333.
- 22. S. Shiota, M. Watada, M. Osamu et al. H. pylori iceA, clinical outcomes, and correlation with cagA: a meta-analysis. PLoS ONE. 2012;7(1):e30354.
- 23. D Manal., S. Mohamed, G. Doaa et al. Helicobacter pylori Western cagA genotype in Egyptian patients with upper gastrointestinal disease. Egyptian Journal of Medical Human Genetics. 2018; 19(4): 297-300, ISSN 1110-8630
- 24. M.J. Blaser, G.I., Perez-Perez H. Kleanthous et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 1995. 55(10):2111-5
- 25. R.K. Vilaichone, V. Mahachai, S. Tumwasorn et al. Molecular epidemiology and outcome of Helicobacter pylori infection in Thailand: a cultural cross roads. Helicobacter. 2004; 5: 453-9.
- 26. Y. Yamaoka, M. Osato, A. Sepulveda et al. Molecular epidemiology of Helicobacter pylori: Separation of H. pylori from East Asian and non-Asian countries. Epidemiology and Infection. 2000; 124(1): 91-96. doi:10.1017/ S0950268899003209
 - 27. F. Aziz, X. Chen, X. Yang. Prevalence

and correlation with clinical diseases of Helicobacter pylori cagA and vacA genotype among gastric patients from Northeast China / // BioMed research international. 2014. 142980. doi. org/10.1155/2014/142980

- 28. M. Achtman, T. Azuma, D.E. Berg et al. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol Microbiol. 1999; 32: 459-470.
- 29. S. Satomi, A. Yamakawa, S. Matsunaga et al. Relationship between the diversity of the cagA gene of Helicobacter pylori and gastric cancer in Okinawa, Japan. J Gastroenterol. 2006; 41: 668-73.
- 30. S. Sahara, M. Sugimoto, R.K. Vilaichone et al. Role of Helicobacter pylori cagA EPIYA motif and vacA genotypes for the development of gastrointestinal diseases in Southeast Asian countries: a meta-analysis. BMC Infect Dis. 2012;12:223. Published 2012 Sep 21. doi:10.1186/1471-2334-12-223.
- 31. E.G. Panayotopoulou, D.N. Sgouras, K. Papadakos et al. Strategy to characterize the number and type of repeating EPIYA phosphorylation motifs in the carboxyl terminus of CagA protein in Helicobacter pylori clinical isolates. J Clin Microbiol. 2007. 45(2): 488-495. doi:10.1128/ JCM.01616-06.
- 32. F.O. Beltrán-Anaya, T.M. Poblete, A. Román-Román et al. The EPIYA-ABCC motif pattern in CagA of Helicobacter pylori is associated with peptic ulcer and gastric cancer in Mexican population. BMC Gastroenterol 14, 223 (2014). . doi.org/10.1186/s12876-014-0223-9.
- 33. S. Miehlke, C. Kirsch, K. Agha-Amiri et al. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. *Int. J. Cancer.* 2000; 87: 322-327. doi:10.1002/1097-0215(20000801)87:3<322::AID-IJC3>3.0.CO;2-M.
- 34. T. Tserentogtokh, B. Gantuya, P. Subsomwong et al. Western-Type Helicobacter pylori CagA are the Most Frequent Type in Mongolian Patients. Cancers (Basel). 2019;11(5):725. 2019 May 24. doi:10.3390/cancers11050725.

