DOI 10.25789/YMJ.2024.87.03 UDC 612.11

V.P. Patrakeeva, E.V. Kontievskaya, O.E. Karyakina

THE RATIO OF CAPILLARY AND VENOUS PERIPHERAL BLOOD, ASSESSMENT OF THEIR CHANGES AFTER SHORT-TERM COOLING

A comparative analysis of capillary and venous blood parameters in practically healthy people before and after general cooling was carried out. It has been established that in capillary blood a higher level of leukocytes is provided mainly by mature forms of monocytes, neutrophils, eosinophils and basophils. There were no significant differences in the level of lymphocytes. The response to cooling, depending on the hematological test, is an increase in the circulating pool of leukocytes in capillary blood due to increased cell migration and activation of lymphocyte recycling, and in venous blood - an increase in the output of neutrophils from the depot. Red blood cells in capillary blood have a large degree of variation in size. After cooling, erythrocyte indices of capillary and venous blood have the same tendency to increase, with a higher rate of increase in the capillary sample, which may reflect their importance in the regulation of the homeostasis of small vessels during cooling. In capillary blood the level of platelets is lower, but their population is more heterogeneous and the content of large cells is higher. With general cooling, platelet parameters, regardless of the hematological test, did not change significantly. Thus, changes in the composition of venous blood reflect the classic response to stress with an increase in the level of segmented neutrophils. Changes in capillary blood parameters are aimed at maintaining the homeostasis of small vessels, increasing the pool of functionally active and recirculating cells that provide an effective response to antigenic influence.

Keywords: capillary blood, venous blood, leukogram, hemogram, general cooling, adaptation.

Introduction. A complete blood count is the most commonly performed test needed to evaluate a patient's condition. Capillary blood is usually used as an alternative to venous blood when conducting general clinical analysis on hematology analyzers. However, there are a number of differences in the determined indicators of these types of blood. Capillary blood has a higher average hemolysis index, which must be taken into account if the analysis is not performed within 24 hours after blood collection (8,26). In addition, it has been shown that the thin aperture of the hematology analyzer (75 micron capillary) can become clogged with epithelial destruction products and other tissue fragments when taking capillary blood, which are automatically counted as blood cells, distorting the actual picture (2). Venous and capillary blood serum cannot

PATRAKEEVA Veronika Pavlovna - Candidate of Biological Sciences, leading researcher, Head of the Laboratory of Ecological Immunology, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian academy of sciences, e-mail: patrakeewa.veronika@yandex.ru; KONTIEVSKA-YA Elena Vladimirovna – junior researcher, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian academy of sciences, e-mail: kaiyo-kato@ yandex.ru; KARYAKINA Olga Evgenievna Candidate of Biological Science, senior researcher at the N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian academy of sciences, e-mail: novogil@mail.ru

be interchangeable when assessing the concentration of lipids and lipoproteins, the levels of which are significantly lower in capillary blood (12). Comparative studies of the content of potassium, chloride, sodium, calcium, phosphorus, creatinine, total protein, urea, bilirubin, AST, ALAT, LD, insulin, thyroxine, thyroid-stimulating hormone (TSH), glucose in the serum of venous and capillary blood (8, 13, 18, 21, 29). In addition, these indicators change significantly under the influence of physical activity, stress, etc. [27, 28]. Assessment of the levels of erythrocyte, platelet and leukocyte indicators of venous and capillary blood is also very controversial, although it is generally accepted that differences in indicators are not clinically significant (6, 11, 14, 15). According to most sources, the number of platelets in venous blood exceeds their content in capillary blood (1, 2, 3, 5, 24). This may be due to the activation of tissue platelet aggregation factors released when finger tissue is pierced. In addition, in the tissue fluid there is a high titer of antibodies mediating binding to the surface glycoproteins of the platelet in the presence of an anticoagulant such as EDTA (1, 2, 11). A feature of capillary endothelial cells is the high expression of HLA-DRII molecules and adhesion molecules, which allows them to actively capture, adhere and infiltrate immune cells [25]. The number of red blood cells in capillary blood is higher according to data (1, 5, 24). Other studies have shown that the content of red blood cells, hemoglobin, lympho-

cytes, neutrophils and hematocrit of venous blood is slightly lower than or equal to their number in capillary blood (2, 10). The level of hemoglobin and hematocrit of capillary blood is higher than that of venous blood according to data (1, 2, 5, 24). Assessment of hemoglobin in capillary blood is not recommended when diagnosing anemia, because indicators are often underestimated compared to venous blood, which leads to a false diagnosis [23]. There is evidence that blood parameters related to red blood cells are more stable than those related to leukocytes or platelets (10). According to some data, the level of leukocytes in capillary blood is higher (1, 2, 5, 24). Detected differences in the content of leukocyte and erythrocyte parameters in capillary and venous blood may be the result of immediate local accumulation of leukocytes upon stimulation of skin puncture, as well as due to the absence of an additional amount of tissue fluid in capillary blood samples, which affects the ratio of liquid and cellular components of hematological samples (2). The level of leukocytes in the blood changes dynamically under the influence of various factors, such as physical activity, stress, changes in diet, influence of climatic conditions, etc. We have previously shown that after general short-term cooling, 3 response options are formed on the part of lymphocytes, which is manifested in maintaining their level, reducing, or increasing their number in circulation in the venous blood (4). Small peripheral vessels are primarily ex-

posed to low temperatures, their spasm occurs, cell aggregation, their migration and functional activity changes, which determines dynamic changes in blood parameters aimed at maintaining the homeostasis of the body. Assessment of the background level and changes in leukocyte, erythrocyte and platelet parameters in different hematological samples during short-term general cooling will allow us to determine the features and correlation of the formation of adaptive reactions, which is necessary when studying the influence of stress factors and interpreting the results when using different hematological samples. Knowledge of the ratio of reactions in capillary and venous blood under normal conditions, with pathology or the influence of some external factors is necessary, because Capillary sampling has recently been increasingly considered as an alternative to venous sampling due to greater accessibility, less discomfort for the patient, and the possibility of more frequent and faster sample collection and analysis.

Aim. To conduct a comparative analysis of adaptive changes in leukocyte, erythrocyte and platelet parameters of capillary and venous blood after general short-term cooling in practically healthy people.

Abbreviations: WBC - leukocytes, RBC - erythrocytes, HGB - hemoglobin, HCT - hematocrit, MCV - average erythrocyte volume, MCH - average hemoglobin content in an erythrocyte, MCHC - erythrocyte hemoglobin saturation, RDW-SD - erythrocyte distribution index, RDV-CV - degree of deviation of red blood cell size from normal, PLT - platelets, PDW - platelet distribution width, MPV - mean platelet volume, P-LCR - percentage of large platelets, PCT - thrombocrit.

Materials methods. A study of hematological and immunological parameters was carried out in 212 practically healthy people of working age before and immediately after general cooling for 5 minutes in a cold chamber (USHZ-25N, Russia) at -25°C. The volunteers wore cotton clothes under constant video surveillance, did not have any acute or exacerbation of chronic diseases during the study period, and had not previously or currently engaged in hardening. Blood was collected by qualified medical personnel before and immediately after being in the cold chamber from the cubital vein into Vaccuette vacuum tubes with EDTA to obtain plasma and conduct hematological studies; with a blood clotting activator to produce serum. Serum and plasma were separated by centrifugation. The samples were frozen once at a tem-

perature of minus 20°C. The leukogram and hemogram were determined using a hematology analyzer XS-1000i (Sysmex, Japan). In blood smears stained according to Romanovsky-Giemsa on a Nikon HemaVision microscope at immersion magnification ×40, a lymphocytogram was studied according to the method of Kassirsky I.A., with determination of the content of large (more than 12 µm), medium (from 8 to 12 µm) and small (up to 8 µm) lymphocytes; monocytogram according to O.P. Grigorova's method, with differentiation of mononuclear cells into promonocytes, monocytes and polymorphonuclear cells; a neutrogram with a count of up to 100 neutrophilic leukocytes, among which cells with 1, 2, 3, 4, 5 or more nuclear segments were isolated. The research results were processed using the Statistica 6.0 application package (StatSoft, USA). To check the data for normality of distribution, the Shapiro-Wilk normality test was used. The median (Me) and 25-75 percentiles were used to describe the data. The statistical significance of differences was determined using the nonparametric Wilcoxon T-test. The critical significance level (p) when testing statistical hypotheses was taken equal to 0.05. To assess the rate of change in indicator levels, growth and loss rates were calculated.

Research results and discussion. A comparative analysis of venous and capillary blood parameters before general cooling is presented in Table 1. No significant differences were established in the levels of erythrocytes, HGB, MCH, MCHC and lymphocytes. When studying the lymphocytogram, it was shown that in venous blood the content of large forms of lymphocytes is higher, the levels of small and medium lymphocytes do not differ significantly. In capillary blood, such indicators as HCT, MCV, RDW-SD, RDW-CV, PDW, MPV, P-LCR are higher. The average level of leukocytes, eosinophils, basophils, monocytes and neutrophils is also higher in capillary blood. A higher level of neutrophils in capillary blood is provided by mature segmented cells with two, three and four nuclear segments. The monocytogram of capillary blood is characterized by a higher content of mature monocytes and polymorphonuclear cells.

A comparative analysis of changes in venous and capillary blood parameters after general short-term cooling was carried out. It was found that the number of leukocytes in venous blood increases from 5.13 (4.13 - 6.14) to 5.46 (4.06 - $6.52) \times 10^9$ cells/I (p = 0.006), in capillary blood - from 5.55 (4.74 - 6.57) to

 $6.07 (5.00 - 7.36) \times 10^9 \text{ cells/l (p=0.001)}.$ To assess the dynamics of changes in capillary and venous blood parameters, the rates of growth and loss of leukocytes were calculated. It was determined that the rate of increase in the number of leukocytes in capillary blood was actually 3 times higher and amounted to 9.4%, versus 3.61% in venous blood.

Changes in neutrophil levels. In capillary blood, the total number of neutrophils increases from 2.86 (2.15 -3.59) to 3.15 $(2.34 - 4.09) \times 10^9$ cells/l (p = 0.001), without a significant change in the level of band cells concentration which before and after general cooling were 0.20 (0.09 - 0.28) and 0.18 (0.10)- 0.26) × 109 cells/l, respectively. An increase in the content of segmented neutrophils was recorded from 2.82 (2.14 -3.45) to 3.06 (2.31 - 3.38) × 10^9 cells/l (p = 0.027). When studying the structure of the segmentogram, an increase in the number of cells with 2, 3 and 4 nuclear segments was established (Table 2). In venous blood, the level of neutrophils also significantly increases from 2.46 (2.00 - 3.19) to $2.89 (2.09 - 3.72) \times 10^9$ cells/I (p = 0.001), without changing the level of band cells (0.18 (0.09 - 0.29) and $0.18 (0.10 - 0.32) \times 10^9 \text{ cells/l}$) and with an increase in the number of segmented neutrophils from 2.27 (1.78 - 2.98) to 2.62 (1.90 - 3.44) ×109 cells/l (p=0.001). In the structure of the segmentogram, the number of cells with 2, 3 and 4 nuclear segments increases.

Despite the same dynamics of changes in the circulation of neutrophils, the growth rates vary significantly. In capillary blood, the growth rate of the total number of neutrophils was 10.1%, segmented cells - 9.65%; in venous blood, the growth rate for neutrophils was 17.8%, for segmented forms - 15.4%. A more active increase in the number of neutrophils and their segmented forms in the venous blood is a classic reaction to an irritating factor and may be associated with the release of cells from the depot in response to stress, because such a short period of influence of a negative factor eliminates the possibility of cell accumulation due to activation of proliferation. However, chronic exposure to a stress factor affects the functional activity of neutrophils, with the activation of their formation of neutrophil traps, which significantly changes the microenvironment and the likelihood of damage to surrounding tissues, which is more clearly manifested in pathological conditions [9, 20].

Changes in monocyte levels. There was no change in the level of monocytes in venous blood $(0.43 (0.30 - 0.56) \times 10^9$

Table 1

Indicators of venous and capillary blood before general cooling, Me (25-75)

Indicator name	Capillary blood, n=212	Venous blood, n=212	The level of significance of the differences, p	
WBC (leucocyte), 109 cells/liter	5.55 (4.74 – 6.57)	5.13 (4.13 – 6.14)	0.002	
RBC (erythrocyte), 10 ¹² cells/liter	4.61 (4.28 – 4.96)	4.58 (4.22–4.90)	-	
HGB (hemoglobin), grams/liter	137 (126 – 150)	136 (124 – 143)	-	
HCT (hematocrit), %	40.3 (38.0 – 44.5)	39.1 (36.8 – 42.3)	0.029	
MCV (average volume erythrocyte), femtoliter	88.1 (85.2 – 92.1)	86.3 (82.6 – 90.0)	-	
MCH (the average hemoglobin content in the erythrocyte), picograms	29.8 (28.7–31.2)	29.3 (28.4 – 30.5)	-	
MCHC (saturation of erythrocytes with hemoglobin) , grams/liter	338 (329 – 344)	340 (332 – 349)	-	
RDW-SD (distribution index of erythrocytes), femtoliter	41.8 (39.5 – 44.4)	39.8 (37.5 – 42.3)	0.018	
RDW-CV (the degree of deviation of the size of erythrocytes from the normal), %	13.3 (12.6 – 14.1)	12.9 (12.4 – 13.6)	0.001	
PLT (thrombocyte), 109cells/liter	192 (161 – 239)	228 (181 – 266)	0.001	
PDW (thrombocytes distribution width), %	15.1 (13.5 – 16.6)	13.9 (12.7 – 15.7)	0.001	
MPV (average thrombocytes volume), femtoliter	11.5 (10.7 – 12.2)	10.9 (10.3 – 11.6)	0.001	
P-LCR (percentage of the content of large thrombocytes), %	37.5 (31.3 – 42.9)	33.3 (29.0 – 39.0)	0.001	
PCT (thrombocrit), %	0.22 (0.18 – 0.27)	0.25 (0.22 – 0.29)	0.001	
Eosinophils 10° cells/liter	0.14 (0.09 -0.20)	0.11 (0.06 – 0.17)	0.001	
Basophils, 109 cells/liter	0.04 (0.02 – 0.11)	0.02 (0.01 – 0.03)	0.001	
N	eutrophils and segmentogram	1		
Neutrophils, 109 cells/liter	2.86 (2.15 – 3.59)	2.63 (2.04 – 3.34)	0.013	
Rod-shaped neutrophils 109 cells/liter	0.20 (0.09 - 0.28)	0.18 (0.09 – 0.29)	-	
Segmented neutrophils, 109 cells/liter	2.82 (2.14 – 3.45)	2.27 (1.78 – 2.98)	0.005	
Neutrophils with 2 core segments, 109 cells/liter	0.94 (0.59 – 1.23)	0.74 (0.55 – 1.03)	0.001	
Neutrophils with 3 core segments, 109 cells/liter	1.27 (1.00 – 1.60)	0.95 (0.73 – 1.31)	0.031	
Neutrophils with 4 core segments, 109 cells/liter	0.57 (0.37 - 0.81)	0.39 (0.25 – 0.56)	0.001	
Neutrophils with 5 core segments, 109 cells/liter	0.07 (0.04 - 0.11)	0.06 (0.03 – 0.11)	-	
Lyn	nphocytes and lymphocytogra	am		
Lymphocytes, 109 cells/liter	1.79 (1.21–2.15)	1.80 (1.36 – 2.26)	-	
Small lymphocytes, 109 cells/liter	1.10 (0.79 – 1.43)	1.10 (0.79 – 1.59)	-	
Average lymphocytes, 109 cells/liter	0.54 (0.40 - 0.74)	0.56 (0.39 – 0.73)	-	
Large lymphocytes, 109 cells/liter	0.14 (0.11 – 0.20)	0.18 (0.12 – 0.25)	0.005	
Monocytes and monocytogram				
Monocytes, 109 cells/liter	0.53 (0.43 – 0.64)	0.43 (0.30 – 0.56)	< 0.001	
Promonocytes, 109 cells/liter	0.14 (0.01 – 0.24)	00.14 (0.09 – 0.22)	-	
Monocytes, 109 cells/liter	0.230 (0.162 – 0.337)	0.135 (0.078 – 0.224)	< 0.001	
Polymorphonuclear monocytes, 109 cells/liter	$0.07 \ (0.05 - 0.10)$	0.04 (0.03 – 0.06)	< 0.001	

cells/I – before general cooling and 0.44 $(0.28-0.58) \times 10^9$ cells/I – after). There were also no significant differences in the structure of the monocytogram. The number of promonocytes was 0.14 (0.09-0.22) and 0.14 $(0.08-0.25) \times 10^9$ cells/I, respectively, before and after cold exposure; mature monocytes – 0.14 $(0.08-0.25) \times 10^9$ cells/I, respectively, before and after cold exposure; mature monocytes – 0.14 $(0.08-0.25) \times 10^9$ cells/I, respectively, before and after cold exposure; mature monocytes – 0.14 $(0.08-0.25) \times 10^9$ cells/I, respectively, before and after cold exposure; mature monocytes – 0.14 $(0.08-0.25) \times 10^9$ cells/I, respectively, before and after cold exposure; mature monocytes – 0.14 $(0.08-0.25) \times 10^9$ cells/I, respectively, before and after cold exposure;

0.22) and 0.12 (0.07 – 0.23) $\times 10^9$ cells/l; polymorphonuclear – 0.05 (0.03 – 0.06) and 0.04 (0.02 – 0.06) $\times 10^9$ cells/l. In capillary blood, the content of monocytes significantly increases from 0.57 (0.46 – 0.82) to 0.65 (0.49 – 0.88) $\times 10^9$ cells/l (p = 0.001). Assessing the structure of the monocytogram, we can say that the in-

crease in the total level of monocytes occurs primarily due to promonocytes (0.14 (0.01-0.24) – before cooling and 0.16 $(0.01-0.26) \times 10^9$ cells/I – after cooling, p=0.021). The content of mature monocytes and polymorphonuclear forms does not actually change and amounts to 0.23 (0.16-0.34) and 0.25 $(0.16-0.35) \times 10^9$

and 0.07 (0.05 - 0.10) ×109 cells/l. An increase in the number of monocytes in capillary blood indicates the need for these cells to enter tissues to participate in adaptive processes. Considering the absence of venous blood monocyte levels in the dynamics, it can be assumed that the increase in the number of cells occurs due to the active migration of cells into smaller vessels from the pari-

cells/l, respectively; 0.07 (0.05 - 0.10)

etal pool of larger vessels, and not due to the circulating part of the population. Prolonged and chronic exposure to a stress factor through increased levels of glucocorticoids activates the trafficking of monocytes from the spleen, and their level in the circulation exceeds the rate of release into the tissue [7]. Changes in the level of lympho-

cytes. In both capillary and venous blood, the absolute number of lymphocytes does not change significantly. In capillary blood, the content of lymphocytes was 1.80 (1.21 - 2.15) - before cooling and $1.74 (1.32 - 2.19) \times 10^9 \text{ cells/l} - \text{after};$ in the venous -2.02 (1.42 -2.58) and 1.90 (1.46 - 2.47) ×109 cells/l, respectively. A decrease in the relative levels of lymphocytes was established: in venous blood from 39 (32.5 - 46.0) to 36.0 (30.0 -43.1) % (p = 0.001); in the capillary -30.3 (24.2 - 35.3) to 28.2 (23.1 - 34.8) \times 10⁹ cells/I (p = 0.001). Assessing the structure of the lymphocytogram, it was shown that in capillary blood the number of small forms of lymphocytes increases, with a decrease in medium and large forms (Table 3). The same trend is recorded in venous blood.

The rate of decrease in the level of lymphocytes in capillary blood was lower and amounted to -6.9%, in venous blood this figure was -7.7%. Despite the similar dynamics in the structure of lymphocytograms, the rates of increase and decrease indicate a more rapid increase in the number of small forms of lymphocytes in capillary blood (growth rate of 11.9% versus 5% in venous blood) and a slower decrease in medium and large forms of lymphocytes (rate of decrease -15.1% and -10.3% - in capillary blood; -24.9% and -28.0% - in venous blood). Small lymphocytes represent the main population of recirculating long-lived cells, i.e. an increase in their level in capillary blood indicates the participation of this part of lymphocytes in maintaining homeostasis when exposed to low temperatures with their subsequent migration to lymph nodes and organs for antigen-stimulated differentiation and proliferation [16]. A decrease in the number of large and medium-sized lymphocytes

Table 2

Structure of the neutrogram before and immediately after short-term general cooling, Me(25-75)

Indicator of name	Before short-term general cooling	After short-term general cooling	The level of significance of the differences, p		
	Capillary blood				
Neutrophils with 2 core segments, 10° cells/liter	0.94 (0.59 – 1.23)	1.03 (0.75 – 1.58)	0.025		
Neutrophils with 3 core segments, 10° cells/liter	1.27 (0.99 – 1.61)	1.50 (1.18 – 2.03)	0.001		
Neutrophils with 4 core segments, 10° cells/liter	0.57 (0.37 – 0.81)	0.65 (0.41 – 0.920)	0.001		
Neutrophils with 5 core segments, 10° cells/liter	0.07 (0.04-0.11)	0.09 (0.06-0.13)	0.060		
Capillary blood					
Neutrophils with 2 core segments, 109 cells/liter	0.74 (0.55 – 1.03)	0.80 (0.54 – 1.18	0.046		
Neutrophils with 3 core segments, 109 cells/liter	0.95 (0.73 – 1.32)	1.06 (0.72 – 1.44)	0.002		
Neutrophils with 4 core segments, 109 cells/liter	0.39 (0.25 – 0.56)	0.42 (0.27 – 0.67)	0.001		
Neutrophils with 5 core segments, 109 cells/liter	0.06 (0.03-0.11)	0.06 (0.04-0.14)	0.146		

Table 3

Structure of the lymphocytogram before and immediately after short-term general cooling, Me(25-75)

Indicator of name	Before short-term general cooling	After short-term general cooling	The level of significance of the differences, p
Capillary blood			
Small lymphocytes, 10 ⁹ cells/liter	1.01 (0.79 – 1.43)	1.23 (0.86 – 1.54)	0.001
Average lymphocytes, 109 cells/liter	0.54 (0.41 - 0.73)	0.46 (0.34 – 0.64)	0.006
Large lymphocytes, 10° cells/liter	0.14 (0.11 – 0.20)	0.12 (0.07 – 0.20)	0.025
	Venous blood		
Small lymphocytes, 10 ⁹ cells/liter	1.10 (0.79 – 1.60)	1.15 (0.87 – 1.62)	0.036
Average lymphocytes, 109 cells/liter	0.56 (0.39 - 0.73)	0.42 (0.28 – 0.64)	0.001
Large lymphocytes, 109 cells/liter	0.18 (0.12 – 0.25)	0.13 (0.09 – 0.18)	0.001

probably occurs due to an increase in their adhesion and transition to the parietal pool. It is known that large and medium-sized lymphocytes for the most part do not recirculate, but migrate to the lamina propria of the small intestine, where they are transformed into plasma cells.

Changes in the level of eosinophils and basophils. In capillary blood, the content of eosinophils increases from 0.16 (0.10 - 0.25) to 0.32 (0.16 - 1.00) \times 10⁹ cells/I (p = 0.019), without a significant change in the level of basophils (0. 04 (0.02 - 0.11) and 0.04 (0.02 - 0.09)×109 cells/I). In venous blood, the content of eosinophils decreases from 0.11 (0.06 -0.17) to 0.10 (0.06 - 0.17) × 10 9 cells/l

(p = 0.002) also without a change in the level of basophils (0.02 (0.01 - 0.03)) and $0.02 (0.01 - 0.04) \times 10^9$ cells/I). Thus, it has been shown that changes in the size of the basophil population are little susceptible to short-term cold influences. An increase in the level of eosinophils is associated with the need for the participation of these effector cells in the formation of innate immune responses in response to adrenergic stimuli [17, 19]. However, an excessive increase in eosinophils can lead to their aggregation, blockage of small vessels and tissue ischemia.

Changes in platelet levels and platelet parameters. After general short-term cooling, no significant changes in the

level of platelets and platelet parameters

were found, either in venous or capillary

susceptible to the influence of short-term

vascular oxidative stress [22]. Thus, an increase in the number of erythrocytes

in practically healthy individuals during

short-term general cooling can be considered as a positive adaptive reaction that ensures the maintenance of vascular

Conclusion. The background levels

homeostasis

Changes in the level of red blood cells and erythrocyte parameters. In capillary and venous blood, similar reactions from erythrocytes and erythrocyte parameters are recorded (Table 5). Increased levels of red blood cells (RBC), hemoglobin (HGB) and hematocrit (HCT) were found. The rate of increase in indicators in capillary blood was higher than in venous blood and amounted to 2.80 and 1.74% for RBC, 2.20 and 1.41% for HGB, and 1.70 and 1.29% for NCT, respectively. Red blood cells are involved in the regulation of endothelial dysfunction by altering the balance between levels of nitric oxide (NO) and reactive oxygen species to prevent the induction of

exposure to low temperatures.

Table 4

blood (Table 4). Thus, it can be assumed that platelet parameters in practically healthy people are more stable and less Changes in platelet levels and platelet parameters before and immediately after short-term general cooling, Me (25-75)

Name of indicator	Before general cooling	After general cooling	Level of significance of differences, p	
	Capillary blood			
PLT, 10 ⁹ cells/liter	192 (161.0 - 239.0)	208.5 (162.0 - 247.0)	0.133	
PDW, %	15.10 (13.50 - 16.60)	15.3 (13.2 - 16.8)	0.340	
PCT, %	0.22 (0.18 - 0.27)	0.230 (0.200 - 0.280)	0.368	
MPV, femtoliter	11.5 (10.7 – 12.2)	11.4 (10.7 – 12.1)	0.239	
P-LCR, %	37.5 (31.3 – 42.9)	37.1 (30.8 – 42.5)	0.081	
	Venous blood			
PLT, 109 cells/liter	228 (181 – 266)	230 (181 – 275)	0.488	
PDW, %	13.9 (12.7 – 15.7)	14.1 (12.6 – 15.4)	0.324	
PCT, %	0.25 (0.22 - 0.29)	0.260 (0.210 - 0.290)	0.132	
MPV, femtoliter	10.9 (10.3 – 11.6)	10.9 (10.3 – 11.5)	0.114	
P-LCR, %	33.3 (29.0 – 39.0)	33.6 (28.7 –38.5)	0.115	

Table 5

Changes in the level of erythrocytes and erythrocyte parameters before and immediately after short-term general cooling, Me(25-75)

Name	Before	After	Level of significance		
of indicator	general cooling	general cooling	of differences, p		
	Capillary blood				
RBC, 10 ¹² cells/liter	4.61(4.28-4.96)	4.74(4.28-5.10)	0.022		
HGB, grams/liter	137(126-150)	140(126-153)	0.020		
HCT, %	40.3(38-44.5)	41(38.6-45.4)	0.022		
MCV, femtoliter	88.1(85.2-92.1)	88.3(85.8-92.2)	0.042		
MCH, picograms	29.8(28.7-31.2)	29.7(28.7-31.1)	0.450		
MCHC, grams/liter	338(329-344)	325(335-344)	0.065		
RDW-SD, femtoliter	41.8(39.5-44.4)	41.7(39.6-44.5)	0.937		
RDV-CV, %	13.3(12.6-14.1)	13.2(12.6-14.1)	0.775		
	Venous blood				
RBC, 10 ¹² cells/liter	4.58 (4.22 – 4.90)	4.64 (4.35 – 5.02)	0.001		
HGB, grams/liter	136 (124 – 143)	138 (127 – 146)	0.005		
HCT, %	39.1 (36.8 – 42.3)	39.7 (37.6 – 42.2)	0.014		
MCV, femtoliter	86.3(82.6-90.0)	86.1(82.4-89.9)	0.007		
MCH, picograms	29.3(28.4-30.5)	29.3(28.3-30.5)	0.828		
MCHC, grams/liter	340 (332 – 349)	341 (335 – 349)	0.153		
RDW-SD, femtoliter	39.8(37.5-42.3)	39.8(37.7-42.2)	0.367		
RDV-CV, %	12.9(12.4-13.6)	12.9(12.4-13.7)	0.075		

of venous and capillary blood parameters in practically healthy people living in the North differ somewhat, but are within the physiological norm. Red blood cells of capillary blood have a large degree of variation in size and the degree of deviation of their sizes from normal. After general cooling, erythrocyte indicators such as RBC, HGB and HCT have the same tendency to increase, but in capillary blood a higher rate of increase is recorded, which may indicate their importance in regulating the maintenance of homeostasis of small vessels during cooling. The total number of platelets is higher in venous blood, while in capillary blood the platelet population is more heterogeneous and the content of large cells is higher. During cooling, the levels of platelets and platelet parameters are more stable and do not change significantly in both capillary and venous blood. It has been shown that in capillary blood there is a higher level of leukocytes mainly due to mature forms of monocytes, neutrophils, eosinophils and basophils. This distribution is probably due to the fact that these cells exhibit the main functional activity in tissues and it is in the capillary pool that there are cells ready to respond to antigens. In response to general short-term cooling, regardless of the hematological test, adaptive reactions are recorded

with an increase in the total level of leukocytes. At the same time, in capillary blood a more rapid replenishment of this pool occurs mainly due to small forms of lymphocytes, promonocytes and eosinophils, while in venous blood the increase in the number of leukocytes is supported by an increase in the content of segmented neutrophils. Thus, it has been shown that even short-term stress leads to changes in the cellular composition of capillary and venous blood, reflecting increased reactions of cell release from the depot, maintenance of vascular homeostasis, migration of leukocytes from larger vessels to small ones and activation of lymphocyte recycling.

The work was carried out within the framework of the program of fundamental scientific research on the topic of the Laboratory of Ecological Immunology of the Institute of Environmental Physiology FECIAR UrB RAS (registration no. 122011300377-5).

References

- 1. Mingacheva A.A., Gergel N.I., Kosov A.I., Kudinova E.V., Karslyan L.S., Kosyakova Yu.A. Gematologicheskie pokazateli klinicheski zdorovyh lic [Hematological indicators of health of healthy people]. Medicinskij al'manah. [Medical almanac. 2011. No. 3(16). P. 175-176 (In Russ.).]
- 2. Mingacheva A.A., Maksimov A.B., Zimanova O.G., Babichev A.V., Baisheva G.M., Pervova Yu. IN. K voprosu ob optimizacii raboty KDL: sravnitel'naya ocenka pokazatelej venoznoj i kapillyarnoj krovi [On the issue of optimizing the work of CDL: comparative assessment of venous and capillary blood parameters]. Remedium Privolzh'e [Remedium Volga region. 2014. P. 33-35 (In Russ.).]
- 3. Mingacheva A.A. Sravnitel'naya ocenka formennyh elementov venoznoj i kapillyarnoj krovi [Comparative assessment of the formed elements of venous and capillary blood]. Aspirantskij vestnik Povolzh'ya [Postgraduate Bulletin of the Volga region. 2011; 1-2: 193-194 (In Russ.).]
- 4. Patrakeeva V.P., Samodova A.V. Vliyanie kratkovremennogo obshchego ohlazhdeniya na migraciyu, recirkulyaciyu i energeticheskij resurs immunokompetentnyh kletok perifericheskoj krovi cheloveka [The influence of short-term general cooling on the migration, recycling and energy resource of immunocompetent cells of human peripheral blood]. Vestnik Ural'skoj medicinskoj akademicheskoj nauki [Bulletin of the Ural Medical Academic Science. 2017; 14 (4): 362-368 (In Russ.).] DOI: 10.22138/2500-0918-2017-14-4-362-368)
- 5. Daae LN, Halvorsen S, Mathisen PM, Mironska KA. Comparison between haematological parameters in 'capillary' and venous blood from healthy adults. Scand J Clin Lab Invest. 1988; 48(7): 723-6. doi:10.1080/00365518809085796.
- 6. Bates-Fraser LC, Moertl KM, Stopforth CK, Bartlett DB, Ondrak KS, Jensen BC, Hanson ED. A practical approach for complete blood count analysis following acute exercise: Capillary vs. venous blood sampling. Advanced Exercise and Health Science. 2024; 1(1): 43-50. https://doi. org/10.1016/j.aehs.2024.01.002
- 7. M. van de Wouw, et al. Acute stress increases monocyte levels and modulates receptor expression in healthy females. Brain, Behavior, and Immunity. 2021; 94: 463-468. https://doi. org/10.1016/j.bbi.2021.03.005
- 8. Maroto-García J, Deza S, Fuentes-Bullejos P, Fernández-Tomás P, Martínez-Espartosa D, Marcos-Jubilar M, Varo N, González Á. Analysis of common biomarkers in capillary blood in routine clinical laboratory. Preanalytical and

- analytical comparison with venous blood. Diagnosis (Berl). 2023; 10(3): 281-297. doi: 10.1515/ dx-2022-0126.
- 9. He XY. et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell. 2024: 474-486.e12.https://doi.org/10.1016/j. ccell.2024.01.013
- 10. Yang ZW, Yang SH, Chen L, Qu J, Zhu J, Tang Z. Comparison of blood counts in venous, fingertip and arterial blood and their measurement variation. Clin Lab Haematol. 2001; 23(3): 155-9. doi: 10.1046/j.1365-2257.2001.00388.x.
- 11. Chavan P, Bhat V, Tiwari M, Gavhane U, Pal S.K. Comparison of complete blood count parameters between venous and capillary blood in oncology patients. J Lab Physicians. 2016; 8: 65-66. doi:10.4103/0974-2727.176238.
- 12. Kupke IR, Zeugner S, Gottschalk A, Kather B. Differences in lipid and lipoprotein concentrations of capillary and venous blood samples. Clin Chim Acta. 1979; 97(2-3): 279-83. doi: 10.1016/0009-8981(79)90426-1.
- 13. Falch DK. Clinical chemical analyses of serum obtained from capillary versus venous blood, using Microtainers and Vacutainers. Scand J Clin Lab Invest. 1981; 41(1): 59-62. doi: 10.3109/00365518109092015
- 14. Baggio S, Togni G, Eckerle I, Vuillemier N, Kaiser L, Gétaz L. Feasibility of home-based ELISA capillary blood self-testing for anti-SARS-CoV-2 antibodies. Practical Laboratory Medicine. 2022; 31(1): e00290. DOI:10.1016/j.plabm.2022.
- 15. Goodrum JM, Lewis LA, Fedoruk MN, Eichner D, Miller GD. Feasibility of microvolumetric capillary whole blood collections for usage in Athlete Biological Passport analysis. Drug Test Anal. 2022; 14(7): 1291-1299. doi: 10.1002/ dta.3254.
- 16. Gowans J. L. The lymphocyte a disgraceful gap in medical knowledge // Immunology Today. 1996; 17(6): 288-291. doi.org/10.1016/0167-5699(96)80547-0.
- 17. Howell A, Arsic N, Griebel P. Resting and activated bovine neutrophils and eosinophils differ in their responses to adrenergic agonists. Veterinary Immunology and Immunopathology. 2024; 272: e110758. https://doi.org/10.1016/j.vetimm 2024 110758
- 18. Kupke IR, Kather B, Zeugner S. On the composition of capillary and venous blood serum. Clin Chim Acta. 1981; 112(2): 177-85. doi: 10.1016/0009-8981(81)90376-4.
- 19. Li R, Zeng J, Ken T. Expression of DEL-1 in alveolar epithelial cells prevents lipopolysaccharide-induced inflammation, oxidative stress, and eosinophil recruitment in acute lung

- International Immunopharmacology. iniurv. 2022; 110: e108961. https://doi.org/10.1016/j.intimp.2022.108961
- 20. Zhu Y et al. Low shear stress exacerbates atherosclerosis by inducing the generation of neutrophil extracellular traps via Piezo1-mediated mechanosensation. Atherosclerosis. 2024: 391: e117473. https://doi.org/10.1016/j.atherosclerosis.2024.117473
- 21. Macleod K, Katz LB, Cameron H. Capillary and Venous Blood Glucose Accuracy in Blood Glucose Meters Versus Reference Standards: The Impact of Study Design on Accuracy Evaluations. J Diabetes Sci Technol. 2019; 13(3): 546-552. doi: 10.1177/1932296818790228.
- 22. Zhuge Z, et al. Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I / // Redox Biology. 2023; 60: e102612. doi.org/10.1016/j.redox.2023.102612
- 23. Shapiro KE, Buhimschi IA, Fleisher J. Accuracy of anemia screening by point-of-care hemoglobin testing in patients seeking abortion. Contraception. 2022; 105: 51-54. https://doi. org/10.1016/j.contraception.2021.09.003
- 24. Kayiran SM, Ozbek N, Turan M, Gürakan B. Significant differences between capillary and venous complete blood counts in the neonatal period. Clin Lab Haematol. 2003; 25(1): 9-16. doi: 10.1046/j.1365-2257.2003.00484.x.
- 25. Li Q, Zhu Z, Wang L, Lin Y, Fang H, Lei J, Cao T, Wang G, Dang E. Single-cell transcriptome profiling reveals vascular endothelial cell heterogeneity in human skin. Theranostics. 2021;11(13): 6461-6476. doi: 10.7150/thno.54917. eCollection 2021
- 26. Doeleman MJH, Esseveld A, Huisman A, de Roock S, Groenestege WMT. Stability and comparison of complete blood count parameters between capillary and venous blood samples. Int J Lab Hematol. 2023; 45(5): 659-667. doi: 10.1111/ijlh.14080.
- 27. Cullen T, Thomas AW, Webb R, Hughes MG. The relationship between interleukin-6 in saliva, venous and capillary plasma, at rest and in response to exercise. Cytokine. 2015; 71(2): 397-400. doi: 10.1016/j.cyto.2014.10.011.
- 28. de Oliveira DCX, Frisselli A, de Souza EG, Stanganelli LCR. Deminice R. Venous versus capillary sampling for total creatine kinase assay: Effects of a simulated football match, PLoS One. 2018; 13(9): e0204238. doi: 10.1371/journal. pone.0204238.
- 29. Woolley T, Rutter E, Staudenmaier M. Comparability and stability of serum creatinine concentration in capillary and venous blood. Br J Biomed Sci. 202380. P. 11402. doi: 10.3389/ bjbs.2023.11402.