тенциальным противоопухолевым действием / Кит О.И., [и др.] // Бюл. сибирской медицины. 2022. Т. 21. №. 2. С. 60-66. DOI: 10.20538/1682-0363-2022-2-60-66

Evaluation of the cytotoxic activity and toxicity of a tropolone derivative with a potential antitumor effect / Kit O.I., [et al.] // Bulletin of Siberian Medicine. 2022. Vol. 21. No. 2. P. 60-

7. Цитостатическое действие новых производных трополона на клетки эпидермальной карциномы / Чембарова Т.В., [и др.] // XII съезд онкологов России: сб. мат-лов. Прил. к науч.-практич. ж-лу «Поволжский онкологич. вестник» (Самара, 18-20 мая 2023 г.). Казань: Медицин. изд. дом «Практика». 2023. C. 229-229.

Cytostatic effect of new tropolone derivatives on epidermal carcinoma cells / Chembarova T.V., [et al.] // XII Congress of Oncologists of Russia. Collection of materials. Supplement to the scientific and practical journal Povolzhsky Oncological Bulletin (Samara, May 18-20, 2023). Kazan: Medical Publishing House "Praktika". 2023. P. 229-229.

- 8. Antioxidant responses related to temozolomide resistance in glioblastoma / Campos-Sandoval J.A., [et al.] // Neurochemistry International. 2021. Vol. 149. P. 105136. DOI: 10.1016/j.neuint.2021.105136
- 9. Gaiaschi L., Bottone M.G., De Luca F. Towards Effective Treatment of Glioblastoma: The Role of Combination Therapies and the Potential of Phytotherapy and Micotherapy // Current Issues in Molecular Biology. 2024. Vol. 46. No. 12. P. 14324-14350. DOI: 10.3390/cimb46120859
- 10. Hinokitiol reduces matrix metalloproteinase expression by inhibiting Wnt/β-Catenin signaling in vitro and in vivo / Li J., [et al.] // International Immunopharmacology. 2014. Vol. 23. No. 1. P. 85-91. DOI: 10.1016/j.intimp.2014.08.012
- 11. Kaina B. Temozolomide in glioblastoma therapy: role of apoptosis, senescence and autophagy. Comment on Strobel et al., Temozolomide and other alkylating agents in glioblastoma therapy. Biomedicines 2019, 7, 69 // Biomedicines

2019. Vol. 7. No. 4. P. 90. DOI: 10.3390/biomedicines7040090

- 12. Nair A.B., Jacob S. A simple practice quide for dose conversion between animals and human // Journal of basic and clinical pharmacy. 2016. Vol. 7. №. 2. P. 27. DOI: 10.4103/0976-0105 177703
- 13. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells / Haney S.L., [et al.] // Oncotarget. 2017. Vol. 8. No. 44. P. 76085. DOI: 10.18632/ oncotarget.18543
- 14. Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis / Li J., [et al.] // Pharmacological research. 2016. Vol. 113. P. 438-448. DOI: 10.1016/j.phrs.2016.09.020
- 15. Temozolomide: an updated overview of resistance mechanisms, nanotechnology advances and clinical applications / Ortiz R., [et al.] // Current neuropharmacology. 2021. Vol. 19. No. 4. P. 513-537. DOI: 10.2174/1570159X186662006262

DOI 10.25789/YMJ.2025.89.14 УДК 616-021.3:616-006.66-092.9 А.Р. Осокин, А.С. Гончарова, С.В. Гурова, А.В. Галина, И.В. Головинов, М.А. Енгибарян, В.Л. Волкова

СОЗДАНИЕ ГЕТЕРОТОПИЧЕСКОЙ **РDX-МОДЕЛИ УВЕАЛЬНОЙ МЕЛАНОМЫ**

Целью работы является создание подкожной PDX-модели увеальной меланомы, которая в дальнейшем будет использована для создания метастаза увеальной меланомы. В ходе работы создана коллекция из 3 гетеротопических PDX-моделей увеальной меланомы, которые при гистологическом исследовании показали, что РDX-модели увеальной меланомы соответствуют донорским опухолям. По результатам нашей работы показатели успешного приживления опухоли первого поколения составили 37,5% (3/8). Также была проведена оценка динамики роста полученных РDХ-моделей. Согласно результатам, скорость роста ксенотрансплантатов первого поколения, полученных от пациентов, была достаточно низкой. Удвоение объёма опухоли произошло за 42 дня.

Чтобы поддерживать рост PDX-модели, опухоли, полученные от мышей первого поколения, последовательно пересадили следующей группе мышей. Полученные нами данные показывают, что модели первого поколения успешно прижились у мышей второго поколения. Также было выявлено, что скорость роста опухолевого узла выше, чем в первом поколении.

Ключевые слова: увеальная меланома, PDX, опухолевые модели

The aim of the work is to create a subcutaneous PDX model of uveal melanoma, which will be further used to create a uveal melanoma metastasis. In the course of the work, a collection of 3 heterotopic PDX models of uveal melanoma was created, which, upon histological examination,

showed that the PDX models of uveal melanoma correspond to the donor tumors. According to the results of our work, the rates of successful engraftment of the first generation tumor were 37.5% (3/8). An assessment of the growth dynamics of the obtained PDX models was carried out as well. According to the results, the growth rate of the first generation xenografts obtained

> sequentially transplanted to the next group of mice. Our data show that the first generation models successfully engrafted in second generation mice. Moreover, the growth rate of the tumor node was considered to be higher than in the first generation.

Keywords: uveal melanoma, PDX, tumor models

from patients was quite low. Doubling of the tumor volume occurred in 42 days. To maintain the growth of the PDX model, tumors obtained from first generation mice were

Для цитирования: Осокин А.Р., Гончарова А.С., Гурова С.В., Галина А.В., Головинов И.В., Енгибарян М.А., Волкова В.Л. Создание гетеротопической PDX-модели увеальной меланомы. Якутский медицинский журнал. 2025; 89(1): 59-63. https://doi.org/10.25789/ YMJ.2025.89.14

ФГБУ «НМИЦ онкологии» Минздрава России, 344037, г. Ростов-на-Дону, ул. 14-я линия, д.63: ОСОКИН Антон Романович аспирант, anton-osokin@mail.ru, ORCID: 0009-0008-5472-8001, ГОНЧАРОВА Анна Сергеевна - к.б.н., зав. испытательным лабораторным центром, fateyeva a s@list.ru, ORCID: 0000-0003-0676-0871, **ГУРОВА Со**фья Валерьевна - м.н.с., испытательный лабораторный центр, gurova.sophie@gmail. com, ORCID: 0000-0002-9747-8515, FA-ЛИНА Анастасия Владимирова - м.н.с., испытательный лабораторный volkovaav58@mail.ru, ORCID: 0000-0001-7823-3865, ГОЛОВИНОВ Игорь Викторович - м.н.с., испытательный лабораторный центр, ivgolovinov@yandex.ru, ORCID: 0000-0003-3011-6904, ЕНГИБАРЯН Марина Александровна – д.м.н., доцент, зав. отделением, ORCID: 0000-0001-7293-2358, ВОЛКОВА Виктория Львовна - к.м.н., врач-онколог, ORCID: 0000-0002-5793-968X.

Введение. Увеальная меланома является вторым по распространенности видом меланомы после кожной. Данное заболевание встречается реже, чем кожная меланома, но является наиболее частым первичным новообразованием внутриглазным

[4]. Опухоль развивается из клетокмеланоцитов, которые находятся во внутриглазных структурах: сосудистой оболочке, цилиарном теле и/или радужной оболочке глаза. Чаще всего данное заболевание возникает в сосудистой оболочке глаза (90%), реже

в цилиарном теле (6%) и радужке (4%) [8].

В настоящее время определены различные факторы, увеличивающие вероятность возникновения увеальной меланомы. Подтверждено, что особенности организма, такие как светлый оттенок глаз и кожи, наличие синдрома диспластических невусов, глазной меланоцитоз и пигментная ксеродерма, являются факторами, повышающими риск [2]. Также вероятность возникновения увеальной меланомы повышает длительное воздействие естественного и искусственного ультрафиолетового излучения [11].

Лечение увеальной меланомы может включать в себя нуклеацию, экзентерацию, лучевую терапию, брахитерапию (размещение радиоактивных источников непосредственно в опухоль) или системную терапию (химиотерапию, таргетную терапию) [11]. Тем не менее данные стратегии не всегда приводят к полному выздоровлению: у половины пациентов впоследствии развиваются метастазы, прогноз при которых всё ещё остаётся неблагоприятным [6].

В настоящее время отсутствуют действенные методы лечения для пациентов с увеальной меланомой прогрессирующей стадии или с метастатическим поражением. Следовательно, для улучшения результатов терапии необходимы инновационные терапевтические подходы [1].

В последние годы наиболее предпочтительными для исследований в области онкологии считаются доклинические модели, созданные путем прямой имплантации опухолевого материала, полученного от пациентов, иммунодефицитным мышам (Patient derived xenografts - PDX), так как они наиболее точно по сравнению с другими модельными системами воспроизводят характеристики человеческой опухоли [3].

PDX-модели, являясь экспериментальным инструментом, способствуют более глубокому изучению молекулярных процессов, лежащих в основе заболеваний, а также определению перспективных целей для терапевтического воздействия. В контексте онкологических исследований использование PDX-моделей увеальной меланомы позволяет расширить понимание механизмов прогрессирования этого заболевания и его метастазирования.

Кроме того, такие модели позволяют тестировать новые терапевтические подходы и выявлять оптимальные комбинации методов лечения. В конечном счете, это может привести к улучшению прогноза для пациентов с метастазом увеальной меланомым [5].

В связи с этим **целью** нашей работы стало создание подкожной PDX-модели увеальной меланомы, а также оценка динамики роста и гистологии полученных опухолевых узлов, чтобы в дальнейшем использовать данную модель для создания метастаза увеальной меланомы.

Материалы и методы. В ходе эксперимента использовали самок мышей линии Balb/c Nude в возрасте 12-14 недель, средний вес которых составлял 27-30 г. Животные были получены из собственного разведения вивария Испытательного лабораторного центра ФГБУ «НМИЦ онкологии» Минздрава России и содержались в индивидуальных вентилируемых клетках, корм и вода предоставлены без ограничений. Все манипуляции, проводимые в рамках исследования, были выполнены согласно этическим принципам, установленным Европейской конвенцией о защите позвоночных животных, используемых для экспериментов или в иных научных целях (ETSN 123, Страсбург, 18 марта 1986 г). Протокол исследования был одобрен локальным биоэтическим комитетом ФГБУ «НМИЦ онкологии» Минздрава России.

Образцы увеальной меланомы были получены от 8 пациентов, проходивших лечение на базе ФГБУ «НМИЦ онкологии» Минздрава России. От всех пациентов было получено письменное информированное согласие на передачу биологического материала.

Хирургические манипуляции с животными в данном эксперименте проводили с использованием внутримышечной инъекционной анестезии таких ветеринарных препаратов, как «Ксила» в дозе 20 мг/кг, «Золелил-100» в дозе 50 мг/кг.

Предварительно нами были получены образцы опухолевого материала увеальной меланомы от пациентов после процедуры энуклеации глаза или экзентерации орбиты. Опухолевый материал транспортировали в виварий течение 15 мин после удаления в питательной среде DMEM, содержащей 10% гентамицина. Опухолевый материал, полученный от одного пациента, имплантировали группе из 3 мышей. По достижении необходимой глубины наркоза животным производили рассечение кожи с правого бока с последующим введением стерильных закрытых тупых ножниц в подкожное пространство для отделения брюшной полости от кожи для создания подкожного кармана. Не травмируя брюшную полость, производили имплантацию выделенного опухолевого материала. Операционную рану ушивали узловым швом. Все хирургические вмешательства проводили в стерильных условиях. Вторую генерацию создавали аналогичным путем.

Измерение линейных размеров опухолевых узлов осуществляли с помощью штангенциркуля еженедельно начиная с 14 сут после имплантации опухолевого материала иммунодефицитным мышам. Объем опухолевого узла производили по формуле:

V=LW2/2,

где L, W – линейные размеры опухоли. Наблюдения и замеры опухолевых узлов выполняли в течение 4 месяцев, начиная с даты имплантации опухолевого материала.

Эвтаназию выполняли при помощи декапитации с последующим забором опухолевого узла по окончанию периода наблюдения.

Опухолевый узел фиксировали в 10%-ном растворе формалина на протяжении 24 ч. После данной процедуры материал помещали в парафин для дальнейшего изготовления гистологических микросрезов, которые окрашивали гематоксилином и эозином согласно стандартной методике. При помощи светового микроскопа ZEISS Ахіо проводили гистологическое исследование донорской опухоли человека и опухолевого материала PDX-молелей.

Результаты и обсуждение. Животные модели играют одну из ключевых ролей в изучении роста и метастазирования опухолей, а также в оценке новых методов лечения, надежность результатов исследований напрямую зависит от выбора модели, которая должна достаточно точно отражать патогенез заболевания [10].

За период 2023—2024 гг. нами были получены образцы первичной опухоли от 8 пациентов с диагнозом увеальная меланома, проходивших лечение на базе ФГБУ «НМИЦ онкологии» Минздрава России, которые имплантировали мышам линии Balb/C Nude (n=3) подкожно в правый бок. Опухоль считалась успешно прижившейся, если объём опухолевого узла достигал не менее 60 мм³. Наблюдение выполняли в течение 4 месяцев; если в течение этого времени не наблюдался рост опухолевых узлов, то процедуру ксенотрансплантации оценивали как не-

эффективную. Все образцы увеальной меланомы были получены при выполнении хирургического этапа лечения и имплантированы в течение 30 мин после операции. Средний возраст пациентов-доноров образцов составил 63 года (от 47 до 76 лет). Среди пациентов-доноров мужчин было 37,5%, женщин - 62,5%. Пациенты-доноры опухолевого материала не получали неоадъювантную химио- или лучевую терапию. У большей части пациентов была диагностирована II стадия заболевания. Всего из образцов опухолей

от 8 пациентов было получено 3 PDXмодели увеальной меланомы человека. Подробные характеристики пациентов и оценка результатов ксенотрансплантации опухолевого материала представлены в таблице. Показатель успешного приживления первичных опухолей, полученных от пациентов, составил 37,5%.

Далее образцы донорских опухолей и соответствующих им успешно приживленных ксеногенных (PDX) опухолей подвергли гистологическому исследованию.

Гистологическое исследование показало, что ксенотрансплантированные гетеротопические (подкожные) опухоли у мышей воспроизводили гистотип соответствующих донорских опухолей. Полученные нами модели состояли из клеток эпителиоидного типа с высоким содержанием пигмента - меланина, с умеренной клеточной атипией. Также в препаратах присутствуют фигуры митотического деления. Можно отметить, что полученные нами модели сохранили ту же степень пигментации, что и исходные опухоли пациентов.

Результаты гетеротопической имплантации увеальной меланомы мышам линии Balb/C Nude

Код процедуры ксенотрансплантанта	Возраст	пол	Способ получения материала	Локализация опухоли	Стадия	Стадия TNM	Результаты гетеротопической имплантации
PDX-UM-01	66	Ж	Энуклеация левого глаза	На 5-6 часах Задняя латеральная стенка глазного яблока	II	T3aN0M0	-
PDX-UM-02	76	Ж	Экзентерация орбиты левого глаза	На 7-8 часах Задняя латеральная стенка глазного яблока	II	T2aN0M0	+
PDX-UM-03	64	M	Энуклеация правого глаза	Во всех квадрантах Диффузное распространение	III	T4aN0M0	+
PDX-UM-04	47	Ж	Экзентерация орбиты правого глаза	На 2-4 часах Вдоль носовой поверхности	II	T3aN0M0	-
PDX-UM-05	67	M	Экзентерация орбиты правого глаза	На 8-9 часу Левая височная область	II	T2aN0M0	-
PDX-UM-06	50	Ж	Экзентерация орбиты левого глаза	На 7-9 часах Задняя латеральная стенка глазного яблока	II	T3aN0M0	+
PDX-UM-07	70	Ж	Экзентерация орбиты левого глаза	Во всех квадрантах Диффузное распространение	III	T3bN0M0	-
PDX-UM-08	62	M	Энуклеация правого глаза	Во всех квадрантах Диффузное распространение	III	T4bN0M0	-

Примечание. «+» - успешно приживленный материал; «-» - отсутствие успешного приживления материала.

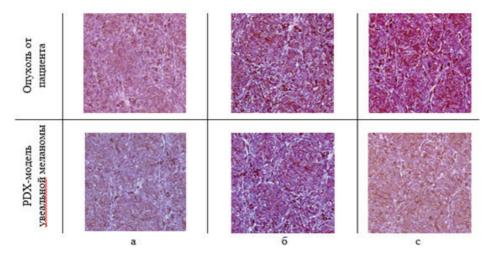
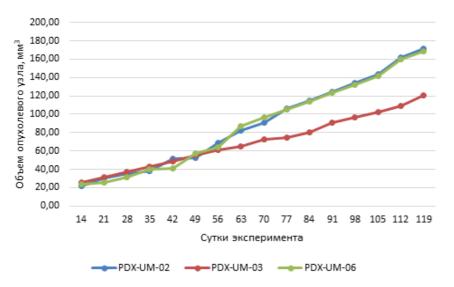


Рис. 1. Гистологические препараты опухолей пациентов и соответствующих им PDX- моделей увеальной меланомы (а - PDX-UM-02; б -PDX-UM-03; c - PDX-UM-06)


По результатам нашей работы показатели успешного приживления опухоли первого поколения составили 37,5% (3/8) при имплантации в гетеротопический (подкожный) сайт, что сопоставимо с результатами работы Némati F. с соавт., где эффективность имплантации образцов увеальной меланомы человека составила 28% (25 из 90), в работе Heegaard S. с соавт. показатели эффективности несколько ниже 13%. Кроме того, при проведении гистопатологического анализа было установлено, что образцы моделей, полученные из данных опухолей, также продемонстрировали характерные признаки увеальной меланомы [7, 9].

В ходе данного исследования нами была проведена оценка динамики роста полученных PDX-моделей. Согласно результатам, представленным

на рис. 2, можно сделать вывод, что скорость роста ксенотрансплантатов первого поколения, полученных от пациентов, была достаточно низкой. Удвоение объёма опухоли произошло за 42 дня.

Чтобы поддерживать рост PDX-модели, опухоли, полученные от мышей первого поколения, последовательно пересадили следующей группе мышей. Полученные нами модели первого поколения успешно прижились у мышей второго поколения. Также было выявлено, что скорость роста опухолевого узла выше, чем в первом поколении. Удвоение объёма опухоли произошло на 35-й день (рис. 3).

Анализ динамики роста опухолевых узлов показал, что полученные нами гетеротопические PDX-модели увеальной меланомы характеризуются отно-

Рис. 2. Динамика роста опухолевых узлов 1-го поколения (пассажа) PDX-моделей увеальной меланомы человека

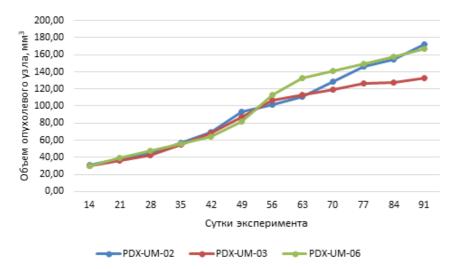


Рис. 3. Динамика роста опухолевых узлов 2-го поколения (пассажа) PDX - моделей увеальной меланомы человека

сительно низкой скоростью роста. Как мы можем предположить, это может быть связано с биологическими свойствами ксенотрансплантированных опухолей, а именно пролиферативным и туморогенным потенциалом. Кроме того, также необходимо рассмотреть вероятное влияние микроокружения на рост ксеногенных опухолей, так как при гетеротопической ксенотрансплантации образцы развиваются в подкожном сайте в несоответствующей для увеальной меланомы микросреде. Вышеперечисленные факты указывают на необходимость проведения дальнейших исследований в этой области.

Заключение. В ходе выполненной работы были получены PDX-модели увеальной меланомы. Созданные модели в дальнейшем можно использовать в экспериментальных исследованиях в области онкологии, как для изучения фундаментальных аспектов патогенеза увеальной меланомы, создания модели метастаза увеальной меланомы и в дальнейшем использование модели для оценки эффективных опухолевых препаратов.

Авторы заявляют об отсутствии конфликта интересов.

Литература

1. Методы моделирования увеальной меланомы / О.И. Кит [и др.] // Вопросы онкологии. 2019. Т. 65, №. 4. С. 498-503.

Methods for modeling uveal melanoma / Kit O. I. [et al.] // Questions of oncology. 2019. Vol. 65. No. 4. P. 498-503.

2. Производное бензимидазола как эффективное противоопухолевое средство в лечении сингенных опухолей легкого и меланомы / Е.Ф. Комарова [и др.] // Южно-российский онкологический журнал. 2022. Т. 3, № 1. С. 15-21

Benzimidazole derivative as an effective antitumor agent in the treatment of syngeneic lung and melanoma tumors / Komarova E.F. [et al.] // South Russian Cancer Journal, 2022. Vol. 3. No. 1. P. 15-21.

3. Сравнение методов создания ортотопической модели гепатоцеллюлярной карциномы печени / С.В. Гурова [и др.]. // Злокачественные опухоли. 2023. Т. 13, №. 3s1. С. 238-238.

Comparison of methods for creating an orthotopic model of hepatocellular liver carcinoma / Gurova S. V. [et al.] // Malignant tumors. 2023. Vol. 13. No. 3s1. P. 238-238.

- 4. Animal models of uveal melanoma: methods, applicability, and limitations / Stei M.M. [et al.] // BioMed research international. 2016. Vol. 2016. No. 1. P. 4521807.
- 5. Calcium electroporation versus electrochemotherapy with bleomycin in an in vivo CAMbased uveal melanoma xenograft model / Tsimpaki T. [et al.] // International Journal of Molecular Sciences. 2024. Vol. 25. No. 2. P. 938.
- 6. Animal models of uveal melanoma: methods, applicability, and limitations / Stei M.M. [et

- al.] // BioMed research international. 2016. Vol. 2016, No. 1. P. 4521807.
- 7. Calcium electroporation versus electrochemotherapy with bleomycin in an in vivo CAMbased uveal melanoma xenograft model / Tsimpaki T. [et al.] // International Journal of Molecular Sciences. 2024. Vol. 25, No. 2. P. 938.
- 8. Cao J., Jager M.J. Animal eye models for uveal melanoma // Ocular oncology and pathology. 2015. Vol. 1. No. 3. P. 141-150.
 - 9. Establishment and characterization of a
- panel of human uveal melanoma xenografts derived from primary and or metastatic tumors / Némati F. [et al.] // Clinical cancer research. 2010. Vol. 16, No. 8. P. 2352-2362.
- 10. Gelmi M.C., Jager M.J. Uveal melanoma: current evidence on prognosis, treatment and potential developments // Asia-Pacific Journal of Ophthalmology. 2024. P. 100060.
- 11. Heegaard S., Spang-Thomsen M., Prause J. U. Establishment and characterization of human uveal malignant melanoma xenografts in
- nude mice // Melanoma Research. 2003. Vol. 13, No. 3. P. 247-251
- 12. Kageyama K., Ozaki S., Sato T. Generation of a liver orthotopic human uveal melanoma xenograft platform in immunodeficient mice // Journal of visualized experiments: JoVE. 2019.
- 13. Uveal melanoma diagnosis and current treatment options Branisteanu D.C. [et al.] // Experimental and Therapeutic Medicine. 2021. Vol. 22, No. 6. P. 1-8.

ЗДОРОВЫЙ ОБРАЗ ЖИЗНИ. ПРОФИЛАКТИКА

М.В. Шубина, С.Ю. Терещенко, Н.Н. Горбачева, О.Л. Москаленко

DOI 10.25789/YMJ.2025.89.15 УДК 613.79

ХАРАКТЕРИСТИКА ПОКАЗАТЕЛЕЙ РЕЖИМА СНА У ПОДРОСТКОВ СИБИРИ

Цель исследования – оценить основные показатели режима сна с учетом пола, возраста и этнической принадлежности у подростков 12-18 лет в трех крупных городах Центральной Сибири: Красноярске (европеоиды), Абакане (хакасы) и Кызыле (тувинцы).

Полученные результаты свидетельствуют о нарушении режима сна у подростков Сибири: позднем отходе ко сну и недостаточной продолжительности сна. Причем, в Красноярске (у европеоидов) данные нарушения режима сна более выражены, чем в Абакане (у хакасов) и в Кызыле (у тувинцев). Также выявлены гендерные и возрастные различия: установленные нарушения сна более выражены среди девочек, по сравнению с мальчиками, и в старшей возрастной группе (15-18 лет), по сравнению с младшей (11-14 лет). Все это требует проведения профилактических мероприятий по регулированию режима сна у школьников.

Ключевые слова: подростки, продолжительность сна, время подъема, время засыпания, хакасы, тувинцы, европеоиды

The purpose of the research is to assess the main indicators of sleep patterns, taking into account gender, age and ethnicity in adolescents aged 12-18 in three large cities of Central Siberia: Krasnoyarsk (the studied ethnic group is Caucasians), Abakan (the studied ethnic groups is Khakass) and Kyzyl (the studied ethnic groups is Tuvans).

The findings show Siberia adolescents have disturbance in sleep patterns: staying up late and an insufficient duration of sleep compared to age norms, which requires preventive measures. Moreover, these sleep disturbances are more pronounced in Krasnoyarsk (among Caucasians), than in Abakan (among Khakassians) and Kyzyl (among Tuvinians). Gender and age differences were identified as well: established sleep disorders are more pronounced among girls compared to boys, and in the older age group (15-18 years) compared to the younger group (11-14 years). All this requires preventive measures to regulate sleep patterns in schoolchildren.

Keywords: teenagers, sleep duration, time to wake up, night sleep latency, Khakass, Tuvans, Caucasians

Для цитирования: Шубина М.В., Терещенко С.Ю., Горбачева Н.Н., Москаленко О.Л. Характеристика показателей режима сна у подростков Сибири. Якутский медицинский журнал. 2025; 89(1): 63-68. https://doi.org/10.25789/YMJ.2025.89.15

Значение сна в подростковом возрасте трудно переоценить, так как в этом периоде происходит интенсивный рост и развитие всего организма как на физическом, так и на психосо-

ФИЦ Красноярский НЦ СО РАН, НИИ медицинских проблем Севера, 660022, г. Красноярск, ул. Партизана Железняка, 3 г: ШУБИНА Маргарита Валерьевна - м.н.с., marg-shubina@mail.ru ORCID: 0000-0002-6724-1058, ТЕРЕЩЕНКО Сергей Юрьевич - д.м.н., проф., руковод. клинич. отд., legise@mail.ru, ORCID: 0000-0002-1605-7859, ResearcherID: C-1004-2013 ГОРБА-ЧЕВА Нина Николаевна - с.н.с., n-n-gorbacheva@yandex.ru, SPIN-code: 7613-7371, https://orcid.org/0000-0003-3920-0694, МОСКАЛЕНКО Ольга Леонидовна - к.б.н., с.н.с., olga_olgaol@mail.ru, ORCID: 0000-0003-4268-6568.

циальном уровнях. Полноценный сон необходим для восстановления и отдыха после дневной активности и повышенной академической нагрузки у современных школьников [27]. Во время сна происходит систематизация полученной информации, репарация тканей и наследственного материала клеток, синтез иммуноглобулинов. продукция нейромедиаторов и гормонов [5, 11]. После сна отмечается улучшение памяти и внимания, повышается работоспособность [27]. Сон снижает воздействие стресса и уровень нейротизации, замедляет процессы старения, улучшает качество кожи [8, 10]. В то время как нарушения сна приводят к многочисленным негативным последствиям. Повышается риск сердечно-сосудистой [13] и онкологи-

ческой патологии, метаболического синдрома и ожирения [14], тревожнодепрессивных расстройств [18], нейродегенеративных заболеваний [10], снижается иммунитет. У подростков отмечается ухудшение успеваемости в школе, повышается раздражительность и уровень агрессии, возникают проблемы в отношениях со сверстниками [24].

Согласно рекомендациям Национального фонда сна США, дети должны спать 9-11 ч до 14 лет и 8-10 ч после 14 лет [19]. Однако по результатам популяционных исследований, установленные нормы часто не соблюдаются [3, 7, 21, 26]. Причем в последнее десятилетие, отмеченное широким внедрением интернета в повседневную жизнь, эта тенденция усилилась.