отношении выявления рака тела матки имела высокие показатели (в 1-й и 2-й основных подгруппах 85,3% и 81,7% соответственно). Данное обстоятельство позволяет рекомендовать проведение генетического исследования субстрата, полученного при выполнении теста Папаниколау, для выявления рака тела матки. Дополнительный мутационный скрининг после жидкостной цитологии по Папаниколау с использованием соскобов шейки матки особенно важен у женщин, скомпрометированных по факторам риска, включая морбидное ожирение. После выявления онкогенных мутаций в эндоцервикальном соскобе следующим этапом целесообразно провести цитологическое исследование биоптатов эндометрия, полученных с помощью щетки-браш Тао. Дополнительное генетическое исследование биоптатов эндометрия после получения цитологического заключения не повышает диагностической эффективности, поэтому экономически его выполнение не оправдано.

Выводы

1. При морбидном ожирении диагностическая чувствительность мутационного скрининга рака тела матки при исследовании соскобов эндоцервикального канала выше по

DOI 10.25789/YMJ.2025.89.04 УДК: 616-021.3

Научно-исслед. клинич. ин-т педиатрии и детской хирургии им. академика Ю.Е. Вельтищева (Институт Вельтищева), 125412, Москва, ул. Талдомская, 2: ГРИ-**ЦЕВСКАЯ Дарья Юрьевна** – н.с., ORCID: 0000-0002-4628-5086, gritsevskaya@mail. ru, ПУТИНЦЕВ Александр Николаевич к.т.н., в.н.с., ORCID: 0000-0001-6080-7445, pa@pedklin.ru, НИКОЛЬСКИЙ Дмитрий Анатольевич – вед. инженер-программист, ORCID:0000-0001-7352-7338, nikolsky.d@ pedklin.ru, СЕМЯЧКИНА Алла Николаевна - д.м.н., гл. н.с., ORCID: 0000-0002-4026-3791, asemyachkina@pedklin.ru, НИКОЛА-ЕВА Екатерина Александровна - д.м.н., гл. н.с.; проф. РНИМУ им. Н.И. Пирогова, ORCID: 0000-0001-7146-7220, enikolaeva@ pedklin.ru, ВОИНОВА Виктория Юрьевна д.м.н., руковод. отдела; зав. кафедрой МБФ РНИМУ им. Н.И. Пирогова, ORCID: 0000-0001-8491-0228, vivoinova@yandex.ru; ШКОЛЬНИКОВА Мария Александровна д.м.н., проф., почетный президент BOO «Ассоциация детских кардиологов России»,

ORCID: 0000-0002-8656-619X 125412.

сравнению с пациентками без ожирения (82,5% против 72,4%, p=0,042), что следует учитывать при организации поэтапного обследования женщин.

- 2. При отрицательном цитологическом заключении в отношении рака шейки матки у пациенток с морбидным ожирением следующим этапом рекомендовано проведение скрининга рака тела матки путем генетического исследования соскобов эндоцервикального канала на онкогенные мутации.
- 3. При выявлении онкогенных мутаций в образцах из эндоцервикального канала в качестве дальнейшей ступени диагностики рака тела матки показано проведение цитологического исследования биоптатов эндометрия, отобранных с помощью щеточной браш-технологии.

Разработанный этапный комплексный диагностический алгоритм эффективен для раннего выявления рака тела матки у больных на фоне морбидного ожирения.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Литература

1. Adherence to ESGO guidelines and impact on survival in obese patients with endometrial cancer: a multicentric retrospective study / Ouas-

- ti S. [et al] // Int J Gynecol Cancer. 2023 Dec 4. No 33(12). 1950-1956. doi: 10.1136/ijgc-2023-004642.
- 2. Association between weight-adjust-ed-waist index and gynecologic cancers: a population-based study / Fang L. [et al] // Front Nutr. 2024 Sep 13. No 11. 1449643. doi: 10.3389/fnut.2024.1449643.
- 3. Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers / Kinde I. [et al] // Sci. Transl. Med. 2013. No 5. 167ra4
- 4. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers / Wang Y. [et al] // Sci Transl Med. 2018 Mar 21. No 10(433). eaap8793. doi: 10.1126/scitranslmed.aap8793.
- 5. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries / Bray F. [et al] // CA Cancer J Clin. 2018. No 68(6). 394–424. doi: 10.3322/caac.21492.
- 6. Identifying molecular mediators of the relationship between body mass index and endometrial cancer risk: a Mendelian randomization analysis / Hazelwood E. [et al] // BMC Med. 2022 Apr 19. No 20(1). 125. doi: 10.1186/s12916-022-02322-3.
- 7. Onstad M.A., Schmandt R.E., Lu K.H. Addressing the role of obesity in endometrial cancer risk, prevention, and treatment // J Clin Oncol. 2016. No 34(35). 4225–4230. doi: 10. 1200/JCO.2016.69.4638
- 8. Potential value of circulating tumor DNA in gynecological tumors / Liu K. [et al] // Am. J. Transl. Res. 2020. No 12. 3225–3233.
- 9. The impact of morbid obesity on survival of endometrial cancer / Güzel A.B. [et al] // Turk J Obstet Gynecol. 2020 Sep. No 17(3). 209-214. doi: 10.4274/tjod.galenos.2020.83773.

Д.Ю. Грицевская, А.Н. Путинцев, Д.А. Никольский, А.Н. Семячкина, Е.А. Николаева, М.А. Школьникова, В.Ю. Воинова

СВЯЗЬ ТИПА И ПОЗИЦИИ МУТАЦИИ В ГЕНЕ *FBN1* С КЛИНИЧЕСКИМИ ПРОЯВЛЕНИЯМИ СИНДРОМА МАРФАНА У ДЕТЕЙ

Впервые на российской когорте детей продемонстрирована связь типа и локализации мутации гена FBN1 с тяжестью клинических проявлений, а именно: LoF-мутации приводят к бо́льшему поражению сердечно-сосудистой и скелетной систем; миссенс-мутации - к бо́льшему поражению глаз. Мутации в экзонах 1-10 приводят к наиболее раннему дебюту изменений скелета (деформация стоп и грудной клетки), мутации в экзонах 11-20 - к наиболее раннему появлению эктопии хрусталика при меньшей выраженности долихостеномелии и более редком формировании дилатации аорты. Мутации в экзонах 21-35 сопровождаются наиболее ранней манифестацией деформации позвоночника. Мутации в экзонах 51-66 реже ведут к эктопии хрусталика.

Ключевые слова: ген *FBN1*, миссенс-мутации, мутации LoF (loss of function), дети, синдром Марфана

For the first time in a Russian cohort of children, the association between the type and localization of the *FBN1* gene mutation and the severity of clinical manifestations was demonstrated: LoF mutations lead to greater damage to the cardiovascular and skeletal systems; missense mutations lead to greater damage to the eyes. Mutations in exons 1-10 lead to the earliest onset of skeletal changes (foot and chest deformities), mutations in exons 11-20 - to the earliest appear-

ance of lens ectopia, with less severe dolichostenomelia and less frequent formation of aortic dilatation. Mutations in exons 21-35 are accompanied by the earliest manifestation of spinal deformity. Mutations in exons 51-66 less often lead to lens ectopia.

Keywords: FBN1 gene, missense mutations, LoF (loss of function) mutations, children, Marfan syndrome

Для цитирования: Грицевская Д.Ю., Путинцев А.Н., Никольский Д.А., Семячкина А.Н., Николаева Е.А., Школьникова М.А., Воинова В.Ю. Связь типа и позиции мутации в гене FBN1 с клиническими проявлениями синдрома Марфана у детей. Якутский медицинский журнал. 2025; 89(1): 16-19. https://doi.org/10.25789/YMJ.2025.89.04

Введение. Синдром Марфана (ОМІМ # 154700) - наследственное аутосомно-доминантное заболевание соединительной ткани с распространенностью 1:5000 [2] в популяции, в основе которого лежат мутации гена FBN1, кодирующего фибриллин-1 компонент внеклеточного матрикса. Отличительной особенностью синдрома Марфана является выраженная вариабельность клинических проявлений, причины которой недостаточно изучены.

С момента открытия гена FBN1 в 1991 г. [5] по настоящее время проводятся исследования на лабораторных животных с синдромом Марфана, изучающие влияние типа мутации гена FBN1 на клинические проявления. На мышиных моделях с LoF (loss of function)-мутациями было доказано выраженное поражение аорты и скелета [8]. У мышей с миссенс-мутациями было выявлено миксоматозное утолщение атриовентрикулярных клапанов сердца [7]. Объяснением вариабельности симптомов у мышей с разными типами мутаций гена FBN1 послужила в разной степени измененная активность TGFβ (трансформирующий фактор роста β) сигнального пути, являющаяся одним из основных патогенетических механизмов развития осложнений при синдроме Марфана [4-6]. На лабораторных животных доказано, что у мышей с LoF-мутациями активность TGFβ сигнального пути изменена больше, чем при миссенс-мутациях, что приводит к возникновению вариабельных клинических проявлений.

В последнее десятилетие XXI в. проводились исследования влияний типа и локализации мутации гена FBN1 на больших группах пациентов с синдромом Марфана различных возрастов. Было подтверждено большее влияние LoF-мутаций на аорту в отличие от миссенс-мутаций [1-3], включая больший средний диаметр корня аорты, более высокий риск ее расслоения или необходимости хирургического вмешательства. Также у пациентов с LoF-мутациями в отличие от пациентов с миссенс-мутациями были выявлены более высокий рост, более выраженные арахнодактилия и долихостеномелия, большая частота встречаемости деформации грудной клетки и высокого неба [1-3]. При этом пациенты с синдромом Марфана с миссенс-мутациями имели большую частоту эктопии хрусталика [3]. Более того, было доказано, что пациенты с синдромом Марфана с миссенс-мутациями с потерей цистеина в отличие от пациентов с миссенс-мутациями без вовлечения цистеина имели большие размеры аорты и большую частоту арахнодактилии [3].

Помимо типа мутации гена FBN1 изучалась связь локализации мутации гена FBN1 и клинической симптоматики при синдроме Марфана. К настоящему времени доказано, что локализация мутации гена FBN1 в экзонах 24-32 ведет к особенно тяжелым клиническим проявлениям. При этом наличие миссенс-мутации с потерей цистеина в указанных экзонах усугубляет течение заболевания большей частотой оперативных вмешательств на аортальном и митральном клапанах сердца, большей частотой хирургической коррекции органа зрения, более выраженными скелетными деформациями [1-3]. Влияние других локализаций мутаций гена FBN1 в настоящее время еще не доказано.

Таким образом, изучение влияния типа и позиции мутации гена FBN1 на тяжесть и спектр клинических проявлений при синдроме Марфана способствует лучшему пониманию патогенеза заболевания и, следовательно, поиску новых мишеней для терапии. Данное исследование дает возможность определить критерии прогноза течения заболевания, что особенно важно у детей. Обоснованное планирование целенаправленного диспансерного наблюдения за больными детьми обеспечит раннюю диагностику возникающих осложнений и их своевременное

Целью данного исследования было установить связь типа и локализации мутации гена FBN1 с тяжестью клинических проявлений синдрома Марфана в российской когорте детей.

Материалы и методы исследования. С октября 2021 г. по декабрь

2023 г. в отдел клинической генетики НИ клинического института педиатрии и детской хирургии им. академика Ю.Е. Вельтищева (Институт Вельтищева) последовательно были госпитализированы 72 ребенка, в возрасте от 0 до 18 лет, с клиническими признаками синдрома Марфана. Все дети были оценены с помощью пересмотренных Гентских критериев [10]. Синдром Марфана подтвержден у 72 детей. Средний возраст в группе составил 12 лет. Включены в исследование 35 девочек и 37 мальчиков.

Родители всех детей, участвующих в исследовании, подписали информированное согласие. Исследование было одобрено локальным этическим Института Вельтищева комитетом (протокол №1 от 31.01.2025).

У всех пациентов был тщательно собран анамнез заболевания, в частности, возраст дебюта поражений систем органов, характерных для синдрома Марфана. Всем детям был проведен физикальный осмотр с подсчетом балла системного поражения соединительной ткани [10]. Согласно Гентским критериям, значение балла ≥7 является диагностически значимым и относится к большим Гентским критериям.

Всем детям была проведена трансторакальная эхокардиография с оценкой анатомии сердца и сосудов с подсчетом Z-критерия размеров корня

Молекулярно-генетическое исследование было проведено всем 72 (100%) детям. Полногеномное секвенирование в лаборатории Evogen, благодаря финансовой поддержке благотворительного фонда «Геном жизни», было проведено n=25 (32%) в группе. Полноэкзомное секвенирование проведено n=10 (14%) в группе. Исследование панели 166 генов, ответственных за костную патологию, проведено n=29 (43%) в лаборатории Медико-генетического научного центра им. академика Н.П. Бочкова. Таргетное секвенирование гена *FBN1* – n=8 (11%) в группе.

Статистический анализ данных проводился с использованием программы IBM SPSS Statistics 26.0.

Результаты. В результате молеку-

лярно-генетического исследования v 42 (58%) детей выявлены LoF-мутации, к которым были отнесены крупные делеции, включая полное отсутствие гена FBN1, мутации сайтов сплайсинга, мутации со сдвигом рамки считывания, нонсенс-мутации. Миссенс-мутации были выявлены у 30 (42%) детей, среди которых: 14 - с потерей цистеина, 16 - без вовлечения цистеина. В зависимости от локализации мутации гена FBN1 дети были поделены на 5 групп: 1) дети с мутациями в экзонах 1- 10, всего 11 (15%) детей, из них: с LoF-мутациями 4 (36%), с миссенс-мутациями 7 (64%); 2) дети с мутациями в экзонах 11 - 20, всего 14 (19) детей, из них с LoF мутациями 8 (57), с миссенс-мутациями 6 (43); 3) дети с мутациями в экзонах 21 - 35, всего 10 (14) детей, из них с LoF-мутациями 5 (50), с миссенс-мутациями 5 (50); 4) дети с мутациями в экзонах 36 - 50. всего 18 (25) детей, из них с LoF-мутациями 12 (67), с миссенс-мутациями 6 (33); 5) дети с мутациями в экзонах 51 - 66, всего 19 (26%) детей, из них с LoFмутациями 13 (68%), с миссенс-мутациями 6 (32%) детей.

Чтобы определить влияние типа и локализации мутации на спектр клинических проявлений у детей с синдромом Марфана, мы сравнили между собой группы 1) детей с LoF- и миссенс-мутациями, 2) детей с миссенсмутациями с потерей и без потери цистеина, а также 3) группы детей, сформированные по локализации мутации в гене FBN1.

Исследование возраста дебюта клинических проявлений при различных мутациях гена FBN1

В отношении дебюта клинических признаков было выявлено, что у детей с LoF-мутациями в отличие от детей с миссенс-мутациями значимо раньше начинают проявляться деформации стоп (до 3 лет) (р=0,027) (рис. 1, а); дети с миссенс-мутациями с потерей цистеина, в отличие от детей с миссенс-мутациями без вовлечения цистеина, раньше начинают страдать деформацией позвоночника (до 6 лет) (р=0,023) (рис. 1, б). У детей с мутациями в экзонах 1-10 раньше остальных проявляются деформации как стоп (до 3 лет) (р=0,016) (рис. 1, в), так и грудной клетки (до 5 лет) (р=0,036) (рис. 1, г); у детей с мутациями в экзонах 11-20 раньше остальных манифестирует эктопия хрусталика (до 5 лет) (р=0,034) (рис. 1, д); при мутациях в экзонах 21-35 раньше остальных выявляется деформация позвоночника (до 6 лет) (р=0,02) (рис. 1, е).

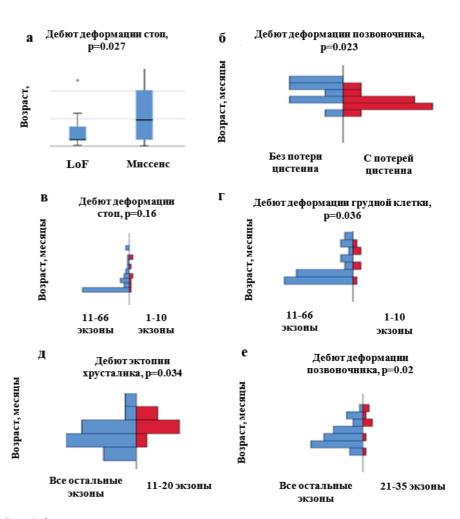


Рис. 1. Статистически значимые различия между сравниваемыми группами относительно дебютов клинических признаков: а — сравнение детей с миссенс- и LoF- мутациями по возрасту дебюта деформации стоп; б — сравнение детей с миссенс-мутациями с потерей и без потери цистеина по возрасту дебюта деформации позвоночника; в-г — сравнение детей с мутациями в экзонах 1-10 с остальными детьми по времени дебютов деформации стоп (в) и грудной клетки (г); д - сравнение детей с мутациями в экзонах 11-20 с остальными детьми по времени дебюта эктопии хрусталика; е - сравнение детей с мутациями в экзонах 21-35 с остальными детьми по возрасту дебюта деформации позвоночника

Исследование тяжести клинических проявлений при различных мутациях гена FBN1

При исследовании тяжести поражения сердечно-сосудистой системы было выявлено, что дети с LoFмутациями имели большие размеры корня аорты в сравнении с детьми с миссенс-мутациями (р=0,003) (рис. 2, а), а также гораздо чаще страдали дилатацией аорты (Z -критерий размера аорты ≥3) (р=0,02). У детей с миссенс-мутациями с потерей цистеина определялся больший размер корня аорты в отличие от детей с миссенсмутациями без вовлечения цистеина (р=0,046) (рис. 2, б). Дети с мутациями в экзонах 11-20 реже остальных имели дилатацию аорты (р=0,035). Выявлен негативный эффект миссенс-мутаций в виде большего поражения митрального клапана (р=0,04).

Относительно тяжести поражения скелета было показано, что дети с LoF-мутациями чаще, чем с миссенсмутациями имели деформацию стоп (р=0,01), килевидную деформацию грудной клетки (р=0,004), более выраженную долихостеномелию (р=0,023) (рис. 2, в). У детей с мутациями в экзонах 11-20 выявлена меньшая выраженность долихостеномелии (р=0,041) (рис. 2, г).

В отношении зрения было установлено, что: дети с миссенс-мутациями достоверно чаще, чем с LoF-мутациями имели эктопию хрусталика (p=0,006); дети с LoF-мутациями чаще, чем с миссенс-мутациями страдали миопией тяжелой степени тяжести (p=0,001). У детей с мутациями в экзонах 51-66 реже, чем у остальных, выявлялась эктопия хрусталика (p=0,001).

Обсуждение. В результате иссле-

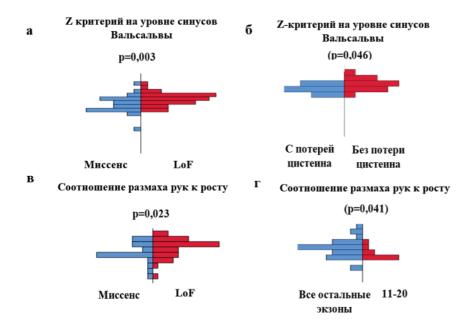


Рис. 2. Статистически значимые различия между сравниваемыми группами относительно клинических признаков: а - сравнение детей с миссенс- и LoF-мутациями по размеру аорты на уровне синусов Вальсальвы; б – сравнение детей с миссенс-мутациями с потерей и без потери цистеина по размеру аорты на уровне синусов Вальсальвы; в - сравнение детей с миссенс- и LoF-мутациями относительно долихостеномелии; г - сравнение детей с мутациями в экзонах 11-20 с остальными детьми по долихостеномелии

дования получены как новые корреляции, так и подтверждение ранее обнаруженных.

В ходе настоящего исследования доказано, что дети с LoF-мутациями в отличие от детей с миссенс-мутациями имеют большие размеры аорты и большее поражение скелета. С патогенетической точки зрения объяснить связь между данным спектром клинических проявлений и LoF-мутациями можно, экстраполируя результаты изучения мышей с синдромом Марфана, на которых было показано, что при LoF-мутациях активность ТGFβ сигнального пути изменена больше, чем при миссенс-мутациях [4, 7]. Напротив, при миссенс-мутациях, по результатам данного исследования. чаще встречается эктопия хрусталика. Известно, что циннова связка, крепящая хрусталик, состоит только из фибриллиновых микрофибрилл. При миссенс-мутациях синтезируется дефектный фибриллин-1, который приводит к формированию несостоятельной цинновой связки, что приводит к эктопии хрусталика. Следовательно, нарушение структурной функции фибриллина-1 лежит в основе данного проявления.

Помимо лучшего понимания патогенеза синдрома Марфана, выявленные корреляции могут помочь в формировании прогноза течения заболевания. Так, согласно результатам нашего исследования, дети с LoF-мутациями

имеют более ранний дебют и частоту деформации стоп и большие размеры аорты. Учитывая, что скелетные признаки манифестируют раньше сердечно-сосудистых проявлений [9], детям с ранней манифестацией деформации стоп (до 3 лет) и подозрением на синдром Марфана нужно как можно раньше, не дожидаясь результатов молекулярно-генетического исследования, рекомендовать наблюдение детского кардиолога. Аналогично, детям с ранним дебютом деформации позвоночника (до 6 лет) и подозрением на синдром Марфана нужно рекомендовать наблюдение детского кардиолога, так как раннее поражение позвоночника характерно для детей с миссенс-мутациями с потерей цистеина, которым также присуще большее поражение аорты в отличие от детей с миссенсмутациями без вовлечения цистеина.

Впервые выявленные в данном исследовании взаимосвязи дебюта и спектра клинических признаков с локализацией мутации гена FBN1 также могут помочь в планировании диспансерного наблюдения детей с синдромом Марфана. Например, детям с мутациями в экзонах 1-10 обосновано наблюдение у травматолога-ортопеда по поводу деформации стоп и грудной клетки, а с мутациями в экзонах 21-35 по поводу деформации позвоночника. Более раннее наблюдение офтальмологом рекомендовано детям с мутациями в экзонах 11-20 в связи с риском эктопии хрусталика.

Заключение. Изучение влияния типа и локализации мутации гена FBN1 на тяжесть и спектр клинических проявлений при синдроме Марфана может способствовать лучшему пониманию патогенеза этого заболевания, формированию прогноза его течения и планированию диспансерного наблюдения. В настоящем исследовании впервые на российской когорте детей с синдромом Марфана доказано влияние типа и локализации мутации гена FBN1 на клинические проявления сердечно-сосудистой, глазной и скелетной систем. Планируется дальнейшее изучение влияния генотипа пациентов на другие системы органов при данном заболевании.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Литература

- 1. Association of modifiers and other genetic factors explain Marfan syndrome clinical variability / Aubart M. [et al.] Éur J Hum Genet. 2018 Dec;26(12):1759-1772. doi: 10.1038/ s41431-018-0164-9.
- 2. Clinical relevance of genotype-phenotype correlations beyond vascular events in a cohort study of 1500 Marfan syndrome patients with FBN1 pathogenic variants / Arnaud P. [et al.] Genet Med. 2021 Jul;23(7):1296-1304. doi: 10.1038/s41436-021-01132-x
- 3. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study/ Faivre L [et al.] Am J Hum Genet. 2007 Sep;81(3):454-66. doi: 10.1086/520125.
- 4. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome/ Judge DP [et al.] J Clin Invest. 2004 Jul;114(2):172-81. doi: 10.1172/JCI20641
- 5. Etiology and pathogenesis of the Marfan syndrome: current understanding / Pyeritz RE. Ann Cardiothorac Surg. 2017 Nov;6(6):595-598. doi: 10.21037/acs.2017.10.04.
- 6. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders/ Sakai LY [et al.] Gene. 2016 Oct 10;591(1):279-291. doi: 10.1016/j.gene.2016.07.033.
- 7. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome/ Habashi JP [et al.] 2006 Apr 7;312(5770):117-21. doi: 10.1126/ science.1124287
- 8. Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1/ Pereira L [et al.], Proc. Natl. Acad. Sci. U.S.A.96 (7) 3819-3823
- 9. The revised Ghent nosology for the Marfan syndrome / Loeys BL [et al.] J Med Genet. 2010 Jul;47(7):476-85. doi: 10.1136/ jmg.2009.072785.
- 10. The Molecular Genetics of Marfan Syndrome/Du Q. [et al.] Int J Med Sci 2021 27;18(13):2752-2766. doi: 10.7150/ijms.60685