

before endoscopic screening at the outpatient stage.

The authors declare no conflict of interest.

References

1. Bektasheva A.K. Kliniko-diagnosticheskaya znachimost' mikrobioty karioznyh polostej zubov i okruzhayushchih tkanej pri sanacii polosti rta (obzor literatury) [Clinical and diagnostic significance of the microbiota of carious cavities of teeth and surrounding tissues in the oral cavity sanitation (literature review)]. Nauka, novye tekhnologii i innovacii Kyrgyzstana [Science, new technologies and innovations of Kyrgyzstan. 2024; No. 7: 78-82 (In Russ.).]
2. Ivashkin V.T., Truhmanov A.S., Maev I.V., et al. Diagnostika i lechenie gastroezofageal'noj reflyuksnoj bolezni (Rekomendacii Rossijskoj gastroenterologicheskoy assoasiacii, Rossijskogo nauchnogo medicinskogo obshchestva terapevtov, Rossijskogo obshchestva profilaktiki neinfekcionnyh zabolеваниj, Nauchnogo soobshchestva po izucheniju mikrobioma cheloveka) [Diagnosis and treatment of gastroesophageal reflux disease (Recommendations of the Russian Gastroenterological Association, the Russian Scientific Medical Society of Therapists, the Russian Society for the Prevention of Noncommunicable Diseases, the Scientific Community for the Study of the Human Microbiome)]. Rossijskij zhurnal gastroenterologii, hepatologii, koloproktologii [Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024; No. 34(5): 111-135. (In Russ.).]
3. Evsyutina Yu.V., Ivashkin V.T. Rol' mikrobioma v razvitiu boleznej pishchevoda [The Role of the Microbiome in the Development of Esophageal Diseases]. Rossijskij zhurnal gastroenterologii, hepatologii, koloproktologii [Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016; No. 26 (3): 11-16. (In Russ.).]
4. Rumyantseva D.E., Truhmanov A.S., Kudryavtseva A.V., et al. Mikrobiota pishchevoda i zheludka u bol'nyh gastroezofageal'noj reflyuksnoj bolezni u zdorovyh dobrovol'cev [Microbiota of the esophagus and stomach in patients with gastroesophageal reflux disease [Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2018; Vol. 28. No. 4: 36-46. (In Russ.).]
5. Turchina M.S., Lupanov M.I., Bukreeva M.V., et al. Annenkova Zh.E. Osobennosti klinicheskikh i endoskopicheskikh proyavlenij GERB u pacientov na ambulatornom prieme [Features of clinical and endoscopic manifestations of GERD in outpatients]. Aktual'nye problemy mediciny [Actual Problems of Medicine]. 2020; 43(2): 187-195. (In Russ.).]
6. Frosali S., Pagliari D., Gambassi G., et al. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. Journal of Immunology Research. 2015; № 2015: 489821.
7. Janovičová L., Holáničová D., Vlková B., et al. Pre-Analytical Factors Affecting Extracellular DNA in Saliva. Diagnostics. 2024;14(3):249.
8. Lundell LR, Dent J, Bennett JR, et al. Endoscopic assessment of oesophagitis: clinical and functional correlates and further validation of the Los Angeles classification. Gut. 1999; 45(2):172-180.
9. Yang L., Lu X., Nossa C. W., et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009; No. 137: 588-597.
10. Zhang D., Liu S., Li Z., Wang R. Global, regional and national burden of gastroesophageal reflux disease, 1990-2019: update from the GBD 2019 study. Annals of Medicine. 2022; 54(1): 1372-1384.

DOI 10.25789/YMJ.2025.92.07

УДК 575.176

Yakut Science Center of Complex Medical Problems: **PAVLOVA Nadezhda Ivanovna** – PhD in Biological Sciences, leading researcher, head of the Laboratory of Hereditary Pathology of the Department of Molecular Genetics, ORCID: 0000-0001-7862-1876, solnishko_84@inbox.ru; **BOCHUROV Alexey Alekseevich** – junior researcher, ORCID: 0009-0008-5414-4102, binbahir@mail.ru; **KRYLOV Alexey Vasiljevich** – junior researcher, ORCID: 0009-0005-5977-5518, alexkrulovwork@gmail.com; **KONONOVA Sardana Kononovna** – PhD in Biological Sciences, chief researcher, head of the Department of Molecular Genetics, ORCID: 0000-0002-2143-0021, konsard@rambler.ru; **EFREMOVA Svetlana Dmitrievna** – junior researcher, ORCID: 0000-0002-5225-5940, esd64@mail.ru; **SOFRONOVA Sargylana Ivanovna** – PhD, chief researcher, head of the Scientific, Organizational and Information Publishing Department, ORCID: 0000-0003-0010-9850, sara2208@mail.ru; **ROMANOVA Anna Nikolaevna** – MD, Director of the Yakut Science Center of Complex Medical Problems, ORCID: 0000-0002-4817-5315, ranik@mail.ru; **KURTANOV Khariton Alekseevich** – PhD, leading expert of the research group of the biotechnological laboratory of the Department of Scientific and Technological Development, State Autonomous Institution of the Republic of Sakha (Yakutia) "Technopark 'Yakutia', ORCID: 0000-0002-2841-0357, hariton_kurtanov@mail.ru.

N.I. Pavlova, A.A. Bochurov, A.V. Krylov, S.K. Kononova, S.D. Efremova, S.I. Sofronova, Kh.A. Kurtanov, A.N. Romanova

VARIABILITY OF PNPLA3 AND GCKR GENES, AND THEIR INFLUENCE ON BIOCHEMICAL PARAMETERS IN RESIDENTS OF THE REPUBLIC OF SAKHA (YAKUTIA)

The article presents a study of the frequencies of *PNPLA3* and *GCKR* gene variants in samples of Yakuts, Evenks, and Russians. A total of 728 people living in the Sakha Republic (Yakutia) participated (331 Yakuts, 147 Evenks, and 250 Russians). Single nucleotide polymorphisms were determined by polymerase chain reaction followed by restriction fragment length polymorphism analysis. The study revealed significant differences between the studied samples. For the rs738409 polymorphism of the *PNPLA3* gene, the G allele was 72-75% in Yakuts and Evenks versus 53% in Russians. For the rs2294918 polymorphism, the protective allele A is virtually absent in Yakuts (6.7%) and very rare in Evenks (17%), the Russian population has a significantly higher proportion of A (43%). For rs1260326 of the *GCKR* gene, the risk allele T was more common in Russians than in Yakuts and Evenks. For the associated SNP rs780094, Russians have a higher percentage of the risk allele A, approximately 48% versus 40% in Yakuts and 44% in Evenks. Linkage disequilibrium (LD) analysis between the pair of polymorphisms rs738409 and rs2294918 in the *PNPLA3* gene showed an extremely weak association between these SNPs. Polymorphisms rs780094 and rs1260326 *GCKR* demonstrated strong linkage in all three studied samples. In the Russian sample, an association was noted between the genotype of the rs738409 *PNPLA3* polymorphism and the concentration of triglycerides, and polymorphisms of the *GCKR* gene showed a significant effect on ALT activity. The obtained data are consistent with the hypothesis that some pathological alleles became established in northern populations due to previous adaptive advantages, but in modern conditions, they have transformed from beneficial to harmful.

Keywords: *PNPLA3*, *GCKR*, *NAFLD*, Yakuts, Evenks, Russians

Для цитирования: Pavlova N.I., Bochurov A.A., Krylov A.V., Kononova S.K., Efremova S.D., Sofronova S.I., Kurtanov Kh.A., Romanova A.N. Variability of *PNPLA3* and *GCKR* genes, and their influence on biochemical parameters in residents of the Republic of Sakha (Yakutia). Yakut Medical Journal. 2025; 92(4): 32-36. <https://doi.org/10.25789/YMJ.2025.92.07>

Introduction. The populations of the Republic of Sakha (Yakutia) represent a unique model for studying genetic and ecological interactions. Russians, Evenks, and Yakuts living in this region differ in their genetic background, history, and traditional diets formed under harsh climates and extreme environmental factors. Until the middle of the 17th century, there was no agriculture in Yakutia, and the nutrition of the indigenous peoples was based on products of animal and plant origin [1]. With the development of industrialization, the historically established way of life and nutrition of the population have changed, so the traditional protein-lipid diet has been replaced by a modern Western one with a predominance of carbohydrates. The main organ of food metabolism is the liver. Consumption of high-calorie foods with high fructose content leads to an increase in circulating triglycerides and very low-density lipoproteins (VLDL), increased ALT levels, which in turn leads to insulin resistance and accumulation of visceral and liver fat [5, 17].

Yakutia is one of the most disadvantaged regions in terms of liver diseases, while the indigenous population is more susceptible to chronic diffuse liver diseases than newcomers [3]. Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in developed and developing countries, its prevalence varies from 2.8% to 24.0% in different populations. It accounts for 60% of all chronic liver diseases [15]. Also, up to 15% of all liver cancer cases are detected in patients with NAFLD [2]. The main causes of NAFLD are sedentary lifestyle, poor nutrition, and genetic polymorphism of various genes [11]. Thus, the genetic variants involved in lipid and glucose metabolism, rs738409 (C/G) in gene 3 containing the domain of patatin-like phospholipase (*PNPLA3*), rs780094 (G/A) and rs1260326 (C/T) in the glucokinase regulatory protein (*GCKR*) gene, are consistently associated with the risk of NAFLD and liver complications of NAFLD.

The rs738409 polymorphism of the *PNPLA3* gene, which leads to the substitution of isoleucine for methionine at position 148 of the protein (I148M), is the most well-known genetic determinant of NAFLD [7]. Thus, the I148M variant disrupts the function of the enzyme adiponutrin (a product of the *PNPLA3* gene), which leads to the accumulation of lipids in hepatocytes and accelerates the progression of the disease. The association of this allele with NAFLD has been confirmed in various populations of the world, including the Chinese, Indians,

and Malays [6] and the peoples of Central Asia [7]. In addition to rs738409, the rs2294918 polymorphism is described in the *PNPLA3* gene, which itself is not directly related to the disease, but modifies the effect of the I148M variant. This SNP is localized in the same gene and is associated with reduced expression of the *PNPLA3* protein [18]. The carriage of the rs2294918 A allele leads to a decrease in the amount of the active enzyme, which to some extent weakens the negative effect of the rs738409 allele.:G affects the accumulation of fat in the liver [10].

The *GCKR* gene encoding the glucokinase regulator was first identified among the NAFLD-associated loci in 2011 [13]. Two related SNPs have been most studied: rs780094 and rs1260326 in the exon of the *GCKR* gene. The A alleles in rs780094 [4] and T alleles in rs1260326 are considered unfavorable. These variants are associated with a decrease in the function of the glucokinase regulator, which leads to increased glucokinase activity and enhanced lipogenesis in the liver [16]. A decrease in the function of the *GCKR* protein leads to a redistribution of metabolic fluxes: fatty acid synthesis in the liver increases, which promotes steatosis, although paradoxically the same alleles are associated with low blood glucose and elevated triglycerides in population studies [9].

The purpose of this study is to compare the frequencies of polymorphisms rs738409, rs2294918 of the *PNPLA3* gene and rs780094, rs1260326 of the *GCKR* gene in samples of Yakuts, Evenks and Russians.

Materials and methods. The study protocol was approved by the local Committee on Biomedical Ethics at the Yakut Scientific Center for Complex Medical Problems (YSC CMP). Informed written consent was obtained from all the volunteers. Clinical information about patients was collected in a special database, and DNA samples were stored in the collection of biomaterial of the YSC CMP using the USU "Genome of Yakutia" (reg. no. USU_507512). The study included 728 healthy volunteers, including 331 Yakuts (244 men average age 46.5 ± 0.78 , 87 women average age 51.8 ± 1.18), 147 Evenks (54 men average age 49.9 ± 2.68 , 93 women average age 51.1 ± 2.1) and 250 Russians (90 men average age 44.7 ± 1.78 , 160 the average age of women was 43.6 ± 1.22). Ethnicity was taken into account up to the third generation, all subjects live in the Republic of Sakha (Yakutia). SNP genotyping was performed using classical polymerase chain reaction (PCR) and restriction fragment

length polymorphism (RFLP) in the Laboratory of Hereditary Pathology of the Department of Molecular Genetics of the YSC CMP. The conditions for amplification of the gene region containing polymorphic variants, indicating the sequence of oligonucleotide primers, the restrictionase used, and the lengths of the extraction fragments, are presented in Table 1.

The correspondence of the genotype distributions to the expected values at Hardy-Weinberg equilibrium and the comparison of the frequencies of allelic variants/genotypes were carried out using the χ^2 (chi-squared) criterion with the Yates correction. SNP linkage disequilibrium analysis was studied by pairwise comparing r² and D using Haplovview software (version 4.2; Broad Institute, Cambridge, Massachusetts, USA) [14].

Results and discussions. A comparative analysis of the frequency distribution of the genotypes and alleles of the *PNPLA3* and *GCKR* gene polymorphisms revealed significant differences between the studied samples (Table 2).

According to the rs738409 polymorphism of the *PNPLA3* gene, Yakuts and Evenks have an extremely high proportion of the G allele (with impaired adiponutrin function): 72-75% against 53% for Russians. More than half of the Yakuts (57.9%) and Evenks (51.5%) had the GG genotype, while only 40.5% of Russians have GG. Statistically, the differences in *PNPLA3*: G frequencies between Yakuts and Russians are significant ($\chi^2 \approx 38.6$; $p < 0.001$), while there is no significant difference between Yakuts and Evenks ($p = 0.42$). This confirms that both northern peoples carry a sharply increased proportion of the *PNPLA3* 148M variant, whereas it is significantly less common among Europeans (Russians). At the second *PNPLA3* locus (rs2294918), the A allele, characterized by reduced protein expression, is practically absent in Yakuts (6.7%) and very rare in Evenks (17%); the Russian population has a significantly higher proportion of A (43%). Thus, the protective effect of the rs2294918 variant is practically absent in the Yakut and Evenk groups, while it is much more pronounced in Russians.

In contrast to the above, according to variant rs1260326 of the *GCKR* gene, on the contrary, the T allele (which weakens the function of glucokinase and increases the risk of steatosis) was more common in Russians than in Yakuts and Evenks. The difference between Yakuts and Russians for this allele was statistically significant ($p = 0.02$). Similarly, according to the related SNP rs780094, Russians have a higher percentage of the A allele, about

Table 1

Primers and restriction enzymes used to detect *PNPLA3* and *GCKR* gene polymorphisms

Gene / SNP	Primers	Annealing Temperature (°C)	Restriction Endonuclease	Restriction fragments
<i>PNPLA3</i> rs2294918	F: CCTCTAACGCCAACTTCCTCC	66	Ama87 I	AA - 271 b.p.
	R: CCTCAAGTGAACACAGACTC			GG - 160, 111 b.p.
<i>PNPLA3</i> rs738409	F: TGGGCCTGAAGTCCGAGGGT	66	BstF5 I	CC - 200, 133 b.p.
	R: CCGACACCAAGTGCCCTGCAG			GG - 333 b.p.
<i>GCKR</i> rs780094	F: CATGTTGGCTAGGCTTGTGAG	62	Pci I	GG - 126, 176, 258 b.p.
	R: AGCTCACGCTGGAACCTCTG			AA - 302, 258 b.p.
<i>GCKR</i> rs1260326	F: TGCAGACTATAGTGGAGCCG	63	MspI	TT - 231 b.p. CC - 81, 150 b.p.

48% versus 40% for Yakuts and 44% for Evenks.

The analysis of linkage disequilibrium (LD) between a pair of rs738409 and rs2294918 polymorphisms in the *PNPLA3* gene showed an extremely weak association of these SNPs in the representatives of the studied populations. Low LD was observed in the samples of Yakuts, Evenks, and even Russians: the values of D' were only 0.032, 0.131, and 0.045, respectively, with virtually zero coefficient of determination ($r^2 \approx 0.0$). For comparison, in global populations, according to data from 1000 Genomes [12], these SNPs in *PNPLA3* are in almost complete linkage. So, for Africans, $D' \approx 1$ with $r^2 \approx 0.015$; for Americans, $D' \approx 0.98$, $r^2 \approx 0.242$; in East Asians, $D' \approx 1$, $r^2 \approx 0.12$; in Europeans, $D' \approx 1$, $r^2 \approx 0.172$; in South Asian populations, $D' \approx 1$, $r^2 \approx 0.097$. Thus, in the studied samples of populations of Yakuts, Evenks and Russians, two *PNPLA3* variants are inherited almost independently, whereas in large global populations There is a strong cohesion between them (Fig.).

The polymorphisms rs780094 and rs1260326 *GCKR* demonstrated strong coupling in all three samples studied, so for Yakuts and Evenks, D' was 1.0 with $r^2 \sim 0.8-0.99$, and for Russians, $D' = 0.898$, $r^2 = 0.769$. Thus, in the studied populations, the alleles of these two *GCKR* SNPs are transmitted almost as a single block. The combination of alleles of two *PNPLA3* variants (rs738409 and rs2294918) forms four possible haplotypes. The frequency distribution of these haplotypes demonstrates noticeable differences between Yakuts, Evenks, Russians, and the reference populations of the world (Table 3).

As can be seen from Table 3, the G-G haplotype is most common in the populations of Yakutia. Among Russians, there is a more uniform distribution across several haplotypes: in addition to G-G, hap-

Table 2

Comparison of the frequency distribution of genotypes and alleles of *PNPLA3* and *GCKR* gene polymorphisms in the studied populations

Population	Genotype frequency (%)			Allele frequency (%)		Chi-square	p
	CC	CG	GG	C	G		
<i>rs738409 PNPLA3</i>						38.62	0.00
Yakuts	7.9	34.2	57.9	25.0	75.0		
Russian	33.5	25.9	40.5	46.5	53.5	0.66	0.42
Yakuts	7.9	34.2	57.9	25.0	75.0		
Evenks	7.6	40.9	51.5	28.0	72.0	20.07	0.00
Evenks	7.6	40.9	51.5	28.0	72.0		
<i>rs2294918 PNPLA3</i>	33.5	25.9	40.5	46.5	53.5	151.18	0.00
Yakuts	0.4	12.5	87.1	6.7	93.3		
Russian	11.4	63.9	24.7	43.4	56.6	18.67	0.00
Yakuts	0.4	12.5	87.1	6.7	93.3		
<i>GCKR rs780094</i>	0.0	34.1	65.9	17.0	83.0	45.02	0.00
Evenks	0.0	34.1	65.9	17.0	83.0		
Russian	11.4	63.9	24.7	43.4	56.6	5.43	0.02
Yakuts	17.1	45.4	37.5	39.8	60.2		
<i>GCKR rs1260326</i>	27.8	41.1	31.0	48.4	51.6	1.04	0.31
Yakuts	17.1	45.4	37.5	39.8	60.2		
Evenks	18.9	50.0	31.1	43.9	56.1	0.99	0.32
Evenks	18.9	50.0	31.1	43.9	56.1		
Russian	27.8	41.1	31.0	48.4	51.6	5.43	0.02
Yakuts	17.1	45.4	37.5	39.8	60.2		
Evenks	11.4	53.0	35.6	37.9	62.1	6.07	0.01
Evenks	11.4	53.0	35.6	37.9	62.1		
Russian	25.3	46.2	28.5	48.4	51.6		

lotypes C–G (30.9%) and G–A (23.9%) have significant proportions. The G–A haplotype is practically absent in the main world populations, but, on the contrary, it is present in Yakuts and Evenks (5.2% and 12.2%, respectively). The European sample (EUR) has a remarkably high proportion of the C–A haplotype (37.1%), which is also quite common in South Asians (22.8%). The frequency of C–A in Russians is 17.1%, which is noticeably higher than in Yakuts (1.9%), but lower than in the European population. Thus, the Yakuts and Evenks are characterized by the predominance of the G–G haplotype and the presence of the G–A haplotype, which is unique to them, whereas the distribution of *PNPLA3* haplotypes in Russians is closer to the European type. For the *GCKR* gene, the combination of alleles of polymorphisms rs780094 and rs1260326 also forms four haplotypes. However, unlike *PNPLA3*, only two main haplotypes are observed in all populations, while the remaining two are extremely rare (Table 4).

According to Table 4, in each population considered, the main share (>90%) is accounted for by the G–C and A–T haplotypes, whereas combinations of G–T and A–C are rare minor haplotypes. These data confirm that the two substitutions under consideration in *GCKR* are closely related: in fact, only two main haplotype lines can be traced in all groups, whereas recombination variants (G–T, A–C) have evolved rarely and therefore persist with low frequency.

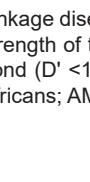
To assess the functional effect of genes, the average value of biochemical parameters in the studied samples of Russians and Evenks was stratified depending on the genotype according to a number of polymorphisms. The effect of the *PNPLA3* variant on the biochemical parameters manifested itself as expected. In the Russian sample, the rs738409 *PNPLA3* polymorphism genotype was associated with triglyceride concentration, so carriers of the unfavorable GG genotype had a lower TG level (on average 1.6 ± 0.9 mmol/l), and carriers of the favorable CC genotype had a higher TG (2.5 ± 1.6 mmol/l, $p=0.01$). This reverse effect is consistent with the known data on *PNPLA3* [6]. variant 148M promotes fat accumulation in the liver by reducing TG secretion into the blood, therefore, GG carriers often exhibit reduced levels of circulating triglycerides against the background of severe liver steatosis. In Evenks, *PNPLA3* genotypes also influenced the indicators, although not so significantly. For example, the average AST activity in Evenks with the GG gen-

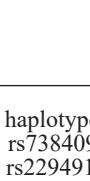
Linkage imbalance in the *PNPLA3* gene

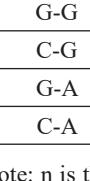
YKT

RUS

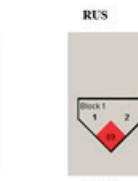
EVNK


AFR


AMR


EAS

EUR



SAS

Linkage disequilibrium in the *GCKR* gene

RUS

EVNK

Linkage disequilibrium in the *PNPLA3* and *GCKR* genes. Note. The color of the cell indicates the strength of the bond between the SNPs: red is a strong bond ($D' = 1$, LOD > 2), white is a weak bond ($D' < 1$, LOD < 2). Abbreviations: YKT – Yakuts; RUS – Russians; EVNK - Evenks; AFR - Africans; AMR - Americans; EAS – East Asians; EUR - Europeans; SAS – South Asians.

Table 3

Frequency of *PNPLA3* haplotypes (rs738409–rs2294918) in Yakutia and worldwide populations

haplotypes rs738409- rs2294918	Frequency of <i>PNPLA3</i> haplotypes							
	YKT (n=330)	RUS (n=178)	EVNK (n=138)	AFR (n=661)	AMR (n=347)	EAS (n=504)	EUR (n=503)	SAS (n=489)
G-G	0.701	0.281	0.599	0.118	0.482	0.350	0.226	0.246
C-G	0.228	0.309	0.235	0.778	0.306	0.468	0.404	0.526
G-A	0.052	0.239	0.122	0	0	0	0	0
C-A	0.019	0.171	0.044	0.104	0.210	0.182	0.371	0.228

Note: n is the number of people studied; YKT – Yakuts; RUS – Russians; EVNK - Evenks; AFR - Africans; AMR - Americans; EAS – East Asians; EUR - Europeans; SAS – South Asians

Table 4

Frequency of *GCKR* haplotypes (rs780094–rs1260326) in populations of Yakutia and the world

haplotypes rs780094- rs1260326	Frequency of <i>GCKR</i> haplotypes							
	YKT (n=331)	RUS (n=250)	EVNK (n=147)	AFR (n=661)	AMR (n=347)	EAS (n=504)	EUR (n=503)	SAS (n=489)
G-C	0.580	0.489	0.568	0.851	0.628	0.512	0.579	0.792
A-T	0.417	0.449	0.378	0.076	0.350	0.469	0.400	0.191
G-T	0	0.025	0	0.018	0.012	0.012	0.010	0.009
A-C	0.003	0.037	0.054	0.055	0.010	0.007	0.010	0.007

Note: n is the number of people studied; YKT – Yakuts; RUS – Russians; EVNK - Evenks; AFR - Africans; AMR - Americans; EAS – East Asians; EUR - Europeans; SAS – South Asians

otype was higher (31.1 U/l) compared with CC (24.8 U/l), but this difference was not significantly significant ($p=0.06$). The *PNPLA3* genotype in Evenks did not significantly affect lipid levels ($p>0.3$ for TG, cholesterol), although the same trend was observed, GG carriers had a slightly lower average TG than CC carriers.

In the Russian sample, polymorphisms of the *GCKR* gene showed a significant effect on the activity of ALT, a key enzyme that reflects the degree of liver damage in NAFLD. Carriers of risky alleles had significantly higher ALT. For example, among Russians, the average ALT for carriers of the AA genotype (rs780094) was 19.2 ± 11.6 U/L, while for the GG genotype it was only 13.5 ± 5.3 U/l ($p<0.001$). A similar effect was confirmed for the associated rs1260326 variant: the TT genotype was associated with ALT of 18.3 ± 11.6 U/l versus ~13.5 U/l for CC ($p=0.02$). In Evenks, the effect of *GCKR* on ALT and other indicators did not reach statistical significance. For example, according to rs780094, the ALT of Evenks was $\sim19\text{--}21$ U/l for all genotypes ($p=0.90$). It can be assumed that with a smaller sample size of Evenks, the associations might not appear, although Evenks with the TT genotype according to rs1260326 had a slightly higher ALT than with CC, but did not achieve a significant difference.

Conclusion. Collectively, the genetic profile of Yakuts and Evenks for polymorphisms rs738409 and rs2294918 of the *PNPLA3* gene is characterized by an increased proportion of alleles associated with the risk of liver obesity, while Russians have significantly lower frequencies of these alleles. However, according to the polymorphisms rs780094 and rs1260326 of the *GCKR* gene, Russians have a higher proportion of alleles with reduced glucokinase function than the northern groups. When comparing the average biochemical parameters depending on the genotype, reliable values were found only in the sample of

Russians, which may be due to the low variability of genotypes in Evenks. The results of the study demonstrate how genetic adaptation to extreme environmental conditions can affect the health of a population in new conditions. In Yakuts and Evenks, long-term evolution in conditions of cold and limited nutrition led to the consolidation of alleles optimizing the accumulation and use of energy, which, in an environment of excess calories, became factors of increased vulnerability to non-alcoholic fatty liver disease.

The authors declare that there is no conflict of interest.

References

1. Basharin G.P. Istoriya zemledeliya v Yakutii: XVII v. [History of agriculture in Yakutia: XVII century]. 1917. Vol. 1. Yakutsk: Yakut book publishing house; 1989. 348 p. (In Russ.)]
2. Vovk E.I. Nealkogol'naya zhirovaya bolez' pecheni kak proaterogennoe zabolevanie: diagnostika i lechenie v obshchey praktike [Non-alcoholic fatty liver disease as a proatherogenic disease: diagnosis and treatment in general practice]. RMZh. Medicinskoe obozrenie [RMJ Medical Review. 2017. No. 2 (1). P. 68-79. (In Russ.)]
3. Tyaptiryanova T. M. Osobennosti klinicheskogo techeniya hronicheskikh diffuznykh zabolevaniy pecheni v usloviyah Krajnego Severa [Features of the clinical course of chronic diffuse liver diseases in the Far North]. Vestnik Yakutskogo gosudarstvennogo universiteta imeni M.K. Ammosova [Bulletin of M. K. Ammosov. North-Eastern Federal University 2006; 3 (4): 32-37 (In Russ.)]
4. Alyavi A.L., Sobirova G.N., Karimov M.M. Association of rs738409 Polymorphism in the *PNPLA3* Gene with Nonalcoholic Fatty Liver Disease. International Journal of BioMedicine 4(4) (Suppl 1) (2014) S8-S11
5. Donati B, Motta BM, Pingitore P, et al. The rs2294918 E434K variant modulates patatin-like phospholipase domain-containing 3 expression and liver damage. Hepatology. 2016 Mar;63(3):787-98. doi: 10.1002/hep.28370.
6. Ensembl [Electronic resource]. / Ensembl genome browser: <https://www.ensembl.org/index.html>
7. Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, Persico M. The Role of Fructose in Non-Alcoholic Steatohepatitis: Old Relationship and New Insights. Nutrients. 2021 Apr 16;13(4):1314. doi: 10.3390/nu13041314
8. Fernandes Silva L., Vangipurapu J., Kuulasmaa T., et al. An intronic variant in the *GCKR* gene is associated with multiple lipids. Sci Rep. 2019 Jul 15;9(1):10240. doi: 10.1038/s41598-019-46750-3
9. Gao H, Liu S, Zhao Z, et al. Association of *GCKR* Gene Polymorphisms with the Risk of Non-alcoholic Fatty Liver Disease and Coronary Artery Disease in a Chinese Northern Han Population. J Clin Transl Hepatol. 2019 Dec 28;7(4):297-303. doi: 10.14218/JCTH.2019.00030
10. Haplovie v. 4.2 [Electronic resource]: <http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haplovie/haplovie>
11. Lê KA, Ith M, Kreis R, et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr. 2009;89(6):1760-5. doi: 10.3945/ajcn.2008.27336
12. Moon AM, Singal AG, Tapper EB. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin Gastroenterol Hepatol. 2020 Nov;18(12):2650-2666. doi: 10.1016/j.cgh.2019.07.060
13. Salari N., Darvishi N., Mansouri K., et al. Association between *PNPLA3* rs738409 polymorphism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. BMC Endocr Disord 2021;125(21). <https://doi.org/10.1186/s12902-021-00789-4>
14. Schwartz BE, Rajagopal V, Smith C, et al. Discovery and Targeting of the Signaling Controls of *PNPLA3* to Effectively Reduce Transcription, Expression, and Function in Pre-Clinical NAFLD/ NASH Settings. Cells. 2020 Oct 7;9(10):2247. doi: 10.3390/cells9102247
15. Sliz E, Sebert S, Würtz P, et al. NAFLD risk alleles in *PNPLA3*, *TM6SF2*, *GCKR* and *LYPLAL1* show divergent metabolic effects. Hum Mol Genet. 2018 Jun 15;27(12):2214-2223. doi: 10.1093/hmg/ddy124.
16. Speliotis EK, Yerges-Armstrong LM, Wu J, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011 Mar;7(3):e1001324. doi: 10.1371/journal.pgen.1001324.
17. Xu R, Tao A, Zhang S, et al. Association between patatin-like phospholipase domain containing 3 gene (*PNPLA3*) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015 Mar 20;5:9284. doi: 10.1038/srep09284.
18. Zain SM, Mohamed R, Mahadeva S, et al. A multi-ethnic study of a *PNPLA3* gene variant and its association with disease severity in non-alcoholic fatty liver disease. Hum Genet. 2012;131(7):1145-52. doi: 10.1007/s00439-012-1141-y.