apy in cancer-related psychiatric disorders across the trajectory of cancer care: a review. *Int Rev Psychiatry.* 2014; 26(1): 44–62. doi: 10.3109/09540261.2013.842542.

28. Torta R., Leombruni P., Borio R., Castelli

L. Duloxetine for the treatment of mood disorder in cancer patients: a 12-week case-control clinical trial. Hum *Psychopharmacol.* 2011; 26: 291-299. doi: 10.1002/hup.1202.

29. Ramaswami R., Villarreal M.D., Pitta D.M.

[et al.] Venlafaxine in management of hot flashes in women with breast cancer: a systematic review and meta-analysis. *Breast Cancer Res. Treat.* 2015; 152(2):231-7. doi: 10.1007/s10549-015-3465-5

D.A. Bondarenko, D.V. Smirnov, N.V. Simonova, V.A. Dorovskikh, R.A. Anokhina, M.A. Shtarberg

RESULTS OF STUDY OF PARAMETERS OF BIOCHEMICAL AND ANTIOXIDANT STATUS IN PATIENTS WITH OVARIAN CANCER DURING POLYCHEMOTHERAPY

DOI 10.25789/YMJ.2020.69.09

УДК 618.11-006.04-089.163:615.272.03

The use of chemotherapeutic drugs causes an increase in the formation of free radicals and a change in antioxidant status. As a result, side effects are observed. On the basis of the Oncology Dispensary Ministry of Health of the Khabarovsk Territory (Komsomolsk-on-Amur) there was conducted a controlled randomized open study of parameters of biochemical and antioxidant status in patients with ovarian cancer: 30 patients received chemotherapy (a experimental group); the control group consisted of 20 healthy women, comparable in age. Biochemical status was evaluated by the levels of total protein, albumin, bilirubin and the activity of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase in the blood of patients. Antioxidant status was evaluated by the levels of lipid hydroperoxides, conjugated dienes, and malondialdehyde and by the activity of the main components of the antioxidant system (ceruloplasmin, vitamin E) in the blood of patients. The administration of chemotherapeutic drugs to patients significantly increased the plasma levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, of lipid hydroperoxides by 50%, conjugated dienes by 51%, and malondialdehyde by 46% compared with the women in the control group. An analysis of the effect of chemotherapy on the activity of the antioxidant system components established that the blood concentrations

of ceruloplasmin and vitamin E were 55 and 39%, respectively, lower than those in the control group. Thus, the incorporation of antioxidants into the treatment of patients with ovarian cancer should be considered pathogenetically justified, clinically reasonable, and promising.

Keywords: ovarian cancer, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipid peroxidation, antioxidant system, patients.

BONDARENKO Dmitry Anatolyevich -Deputy Chief Medical Officer, Oncology Dispensary, Ministry of Health of the Khabarovsk Territory, 681000, Komsomolskon-Amur, st. Ussuriyskaya, 5, Russia; Post-graduate student, Amur State Medical Academy, Ministry of Health of Russia, 675006, Blagoveshchensk, st. Gorkogo, 95, Russia, e-mail: bondad@mail.ru, https:// orcid.org/0000-0002-0853-7887, SMIRNOV Dmitry Vladimirovich - Chief Medical Officer, Oncology Dispensary, Ministry of Health of the Khabarovsk Territory, 681000, Komsomolsk-on-Amur, st. Ussuriyskaya, 5, Russia, e-mail: mail@onkokms.ru. https:// orcid.org/0000-0001-5302-897X, SIMONOVA Natalya Vladimirovna - doctor of biological sciences, professor, Amur State Medical Academy, Ministry of Health of Russia, 675006, Blagoveshchensk, st. Gorkogo, 95, Russia e-mail: simonova agma@vandex https://orcid.org/0000-0001-6805-2577, DOROVSKIKH Vladimir Anatolyevich doctor of medical sciences, professor, Amur State Medical Academy, Ministry of Health of Russia, 675006, Blagoveshchensk, st. Gorkogo, 95, Russia, e-mail: dorovskikh@mail. https://orcid.org/0000-0002-5418-2466, ANOKHINA Raisa Afanasevna - candidate of medical sciences, associate professor, Amur State Medical Academy, Ministry of Health of Russia, 675006, Blagoveshchensk, st. Gorkogo, 95, Russia, e-mail: anokhinara@ mail.ru, SHTARBERG Mikhail Anatolyevich candidate of medical sciences, Amur State Medical Academy, Ministry of Health of Russia,

675006, Blagoveshchensk, st. Gorkogo, 95,

Russia, e-mail: shtarberg@mail.ru, https://

orcid.org/0000-0002-4656-638X

urgent problem of modern gynecological oncology is an increase in the frequency of malignant ovarian tumors, the bulk of which are stage III-IV processes [2, 10]. Ovarian cancer is the most sensitive tumor to the therapeutic effect of cytotoxic drugs, however, the possibilities of specific therapy are limited due to toxic complications and pronounced metabolic dysfunctions at the level of the whole organism, which largely depend on the activation of lipid peroxidation (LP) [1, 15]. The action of peroxide products under these conditions is manifested in an increase in the membrane ion permeability, dissociation of oxidative phosphorylation, disruption of the structure and function of mitochondria, ribosomes, and a decrease in the activity of membrane-bound enzymes [9]. In addition, according to published data, platinum preparations, used mainly in the treatment regimen for patients with ovarian cancer, are antitumor agents that potentially cause the development of hepatotoxicity [3]. Therefore, there is a need to develop new sciencebased approaches and pathogenetically substantiated optimization of therapy in patients with ovarian cancer [14].

The purpose of the study was to study the parameters of biochemical and

antioxidant status in patients with ovarian cancer during polychemotherapy (PCT).

Material and methods. A prospective, controlled, open, randomized trial was conducted in accordance with the "Rules for Qualitative Clinical Trials (GCP)" (OST No. 42-511-99 of December 29, 1998), with the provisions of the Helsinki Declaration and Guidelines for Good Clinical Practice developed at the International Conference on harmonization of technical requirements for the registration of pharmaceutical products intended for humans (ICH-GCP - International Conference on Harmonization of Technical Requirements for Human Use) and with the permission of the ethical committee of Amur State Medical Academy.

The control group consisted of 20 practically healthy women, comparable in age. The experimental group included 30 patients who are being treated in the oncology clinic of the Ministry of Health of the Khabarovsk Territory (Komsomolskon-Amur). Criteria for inclusion in the study: women over 18 years old; verified process (proven morphologically); stage III ovarian cancer; the absence of serious impaired renal, liver and hematopoietic function; adequate indicators of the cardiovascular and respiratory systems;

Table 1

The concentration of total protein, albumin (g / l) and total bilirubin (µmol / l) of blood in healthy women and stage III ovarian cancer patients with chemotherapy ($M \pm m$)

Indicator	Rate	Group		
		Control group (almost healthy), n=20	Experimental group (patients with ovarian cancer during polychemotherapy), n=30	
			Stage I (before treatment)	II stage (5th day of treatment)
Total protein	65.0-85.0	82.5±4.4	70.7±5.6	69.8±6.0
Albumin	35.0-45.0	44.2±2.5	43.0±3.1	41.5±3.6
Total bilirubin	8.5-22.5	11.8±1.2	6.9±0.6*	11.0±0.8 **

Note. Here and in the Table 2 - 4: * - significance of differences in indicators compared with

practically healthy women (control group) (p < 0.05);

** - reliability of differences in indicators compared with patients at the first stage of the study (before treatment) (p < 0.05).

synchronous and metachron malignant tumors; voluntary informed consent. Criteria for exclusion from the study: acute infections, including hepatitis B and C, HIV; disease progression against the background of special treatment, identification of distant metastases according to the control clinical examination; history of uncontrolled convulsive disorder; previous neuropathy of any etiology, more than 1 degree of severity; clinically significant uncontrolled disorders: myocardial infarction, stroke, or transient ischemic attack, psychiatric illness / social circumstances that limit the patient's ability to fulfill the requirements of the study. All patients received PCT using platinum preparations: cisplatin, (cytostatic carboplatin antitumor chemotherapeutic drugs of the alkylating type containing divalent platinum (II) in the composition of the molecules according to the scheme: carboplatin AUC6-7 intravenously (iv) on the 1st day 21 -day course, or ATS (cisplatin 50 mg / m2 iv, doxorubicin 50 mg / m2 iv, cyclophosphamide 500 mg / m2 iv on the first day of the 21-day course).

the absence of primary multiple,

Blood sampling was carried out before treatment and on the 5th day of treatment (in the process of PCT). We evaluated the level of total bilirubin, the concentration of total protein and albumin, aspartate aminotransferase (AcAT), alanine aminotransferase (AlAT), alkaline phosphatase (ALP) on a Clima MC-15 biochemical analyzer (China). The intensity of lipid peroxidation processes was evaluated by examining the content of lipid hydroperoxides, diene conjugates, malondialdehyde, and AOS components (ceruloplasmin, vitamin E) in the blood plasma of patients according to the methods described in our previously published works [8, 12, 17]. The following instruments were used in the work: KFK-2mp spectrophotometer, UNICO spectrophotometer, Solar PV 1251 C photoelectrocolorimeter. The results were statistically processed using Student's t test (t) using the Statistica v.6.0 program. The results were considered reliable at p < 0.05

Results and discussion. algorithm of clinical and biochemical studies in cancer patients includes the mandatory determination of the content of total protein and albumin in the blood serum, since the development of malignant neoplasms is characterized, as a rule, by the state of severe hypoproteinemia due to a violation of the synthesizing function of the liver, the consumption of albumin as a plastic

material for tumor tissue [4]. The results of our study showed a decrease in the concentration of total protein by 15% in the blood of patients with ovarian cancer at the first stage of the study (before treatment) in comparison with the same indicator in the group of healthy women (control), but the differences were not significant (Table 1). It is important to note that the content of total protein and albumin in patients at both I and II stage of the study (during PCT) was in the range of physiological norm, however, the normal concentration of albumin does not always provide adequate transport function of the protein, which may be associated with a violation secondary and / or tertiary structure. That is why T.V. Davydova et al. an opinion was expressed about the need to study in patients with ovarian cancer not only the concentration of serum albumin, but also the conformational transport characteristics of the latter [4]. The study of the total bilirubin content showed a

significant decrease of this indicator by 42% in the blood of patients with ovarian cancer compared with the control and allowed us to state hypobilirubinemia (p <0.05). In the process of PCT (stage II treatment), the level of bilirubin in the experimental group tended to increase by 1.5 times, without leaving the range of the physiological norm, relative to the same parameter in stage I (p <0.05).

A study of the activity of hepatic transaminases in patients with stage III ovarian cancer upon admission to the Oncology Center (before treatment, stage I) made it possible to record the level of AIAT and AsAT within normal limits, which did not significantly differ from similar parameters in practically healthy women (control) (Table 2).

In the process of PCT in stage II, a significant increase in the activity of enzymes in the blood of patients was observed in comparison with indicators in stage I and relative to the upper limit of normal (ULN): the level of Alanine

Table 2

Enzymatic activity indices (e / l) in practically healthy women and stage III ovarian cancer patients with polychemotherapy (M ± m)

Indicator	Rate	Group			
		Control group	Experimental group (patients with ovarian cancer during polychemotherapy), n=30		
		(almost healthy), n=20	Stage I (before treatment)	II stage (5th day of treatment)	
Alanine Aminotransferase	10-31	22.0±2.1	30.2±2.8	93.7±5.2***	
Aspartate Aminotransferase	5-40	26.5±2.8	37.7±3.3	60.2±4.5***	
Alkaline phosphatase	50-290	85.4±5.5	153.7±10.8*	258.9±21.1***	

Aminotransferase exceeded ULN by 3

times and was 3.1 times higher than the same parameter in stage I (p <0.05),

Aspartate Aminotransferase - 1.5 and

1.6 times, respectively (p <0.05), which indicates the development of hepatic cytolysis (or hepatic cell drug-induced liver injury (DILI) [3]) with the introduction of platinum preparations. The data obtained are consistent with the results of studies of E.V. Maximova, who established an increase in hepatic transaminases in 85.2% of cases in patients with ovarian cancer on the background of PCT [5]. The calculation of the de Ritis coefficient (Aspartate Aminotransferase / Alanine Aminotransferase) in patients at stage Il made it possible to register a value of less than 1 (0.64), which indicates DILI with an inflammatory type of

response [6]. PCT was accompanied

by a significant increase in the level of

alkaline phosphatase by 68.4% in the

blood of patients with ovarian cancer in comparison with the activity of this enzyme at the first stage of research, which significantly exceeded the control by 3 times, but it is important to note that before the treatment and in the process of PCT, the values of alkaline phosphatase

Table 3

The content of lipid peroxidation products (nmol / ml) in practically healthy women and stage III ovarian cancer patients with polychemotherapy ($M \pm m$)

Indicator	Group			
	Control group (almost	Experimental group (patients with ovarian cancer during polychemotherapy), n=30		
	healthy), n=20	Stage I (before treatment)	II stage (5th day of treatment)	
Lipid hydroperoxides	30.8 ± 2.1	39.0 ± 1.5*	46.5 ± 1.8*	
Diene conjugates	36.0 ± 2.0	48.6 ± 2.2*	54.5 ± 2.0*	
Malonic daldehyde	4.8 ± 0.2	5.7 ± 0.3	7.0 ± 0.3*	

Table 4

The content of antioxidant system components ($\mu g / ml$) in practically healthy women and patients with stage III ovarian cancer on the background of polychemotherapy ($M \pm m$)

Indicator	Group				
	Control group (almost	Experimental group (patients with ovarian cancer during polychemotherapy), n=30			
	healthy), n=20	Stage I (before treatment)	II stage (5th day of treatment)		
Ceruloplasmin	32.6 ± 2.5	20.4 ± 1.8*	14.6 ± 1.0*		
Vitamin E	54.2 ± 3.0	42.5 ± 2.2*	33.2 ± 1.5*		

out of the range of physiological norms, which correlates with published data [14]. Thus, the study of biochemical status parameters in patients with stage III ovarian cancer indicated the formation of a hepatocellular type of liver injury during PCT, the main pathogenetic mechanisms of which are, firstly, the direct induction of apoptosis; secondly, the formation of toxic metabolites in phase I reactions (mediated by P-450 cytochromes), which leads to an increase in lipid peroxidation in hepatocytes and, as a consequence, a disruption in the structure of cell membranes and necrosis; thirdly, mitochondrial dysfunctions; fourthly, a violation of calcium metabolism in the cell, an increase in the intracellular concentration of Ca2 + ions, leading to injury to the cell wall and its lysis [3]. It is quite logical that under these conditions, the antioxidant system (AOS) experiences extreme stress and tension, since the activity of its components is aimed at stabilizing lipoperoxidation processes and inhibiting the cascade of LPO reactions that have a chain avalanche-like character. In addition, our previous preclinical studies on a model of toxic liver injury induced by the introduction of carbon tetrachloride showed a clear relationship between changes in the biochemical status and the state of the LPO / AOS system of the body [11, 13]. Therefore, it is advisable,

in our opinion, to study the parameters of antioxidant status in ovarian cancer in the process of PCT, which is of fundamental importance for the purpose of further pharmacological correction of changes by the appointment of antioxidant agents [16].

A study of the content of lipid peroxidation products in the blood plasma of patients with ovarian cancer showed (Table 3) that, against the background of the oncological process, a significant increase in the primary lipid peroxidation products was observed (lipid hydroperoxides were higher by 27%, diene conjugates by 35%, p <0.05) and unreliable - the secondary product of peroxidation of malondialdehyde (19%) in comparison with similar indicators in the group of healthy women. Analyzing the degree of accumulation of lipid peroxidation products in the dynamics of PCT, it is important to note a significant increase in lipid hydroperoxides by 19% (p <0.05), malondialdehyde by 23% (p <0.05) and diene conjugates by 12% on the 5th day of the study (II stage) in relation to these parameters in stage I, which in turn significantly exceeded the control by 50%, 46% and 51%, respectively (p <0.05). Our data are consistent with T.P.

Gening et al., Indicating an increase in the level of secondary lipid peroxidation products in the blood plasma of patients with ovarian cancer in clinical stage III according to FIGO 3 days after the first course of PCT according to the CAP scheme and 3 days after the second course [7].

Analyzing the activity of the main components of the antioxidant system (Table 4), it is important to note that at the stage of patient admission to the Oncology Center (before treatment), there was a significant decrease in ceruloplasmin by 38% (p <0.05) and vitamin E by 22% (p < 0.05) compared with similar indicators in the group of healthy women (control), which indicates the tension of the antioxidant system in ovarian cancer, PCT with platinum drugs leads to a progression in the degree of AOS depletion, as indicated by a significant decrease in the concentration of ceruloplasmin (by 29%) and vitamin E (by 22%) in the blood plasma of patients relative to the indicators obtained at stage I of the study (p <0.05). On the 5th day of treatment, the content of ceruloplasmin was 55% lower than in the control group of women, vitamin E -

39% (p <0.05), which allows us to state the fact of a decrease in the activity of the main components of AOS against the background of an increase in the intensity of LPO processes in the conditions of PCT. Thus, the treatment of patients with ovarian cancer with the use of platinum preparations is accompanied by changes in the biochemical and antioxidant status of patients, which makes it necessary to include drugs with hepatoprotective and antioxidant effects in complex therapy.

Conclusions

- 1. Chemotherapy according to the ATS scheme in patients with stage III ovarian cancer promotes the development of hepatic cytolysis, inducing an increase in the activity of alanine aminotransferase, aspartate aminotransferase. phosphatase.
- Against the background polychemotherapy of ovarian cancer with platinum preparations, changes in the antioxidant status of the body are observed, based on the accumulation of lipid peroxidation products and a significant decrease in the activity of the main components of the antioxidant system (ceruloplasmin, vitamin E).

References

- 1. Антонеева И.И. Перекисное окисление липидов и ферментативное звено антиоксидантной системы крови при раке яичников. Казанский медицинский журнал. 2006;87(3):213-214. [Antoneyeva II. Lipid peroxidation and the enzymatic link of the antioxidant blood system in ovarian cancer. Kazanskiy meditsinskiy zhurnal. 2006;87(3):213-214. (In Russ.)].
- 2. Лебедева В.А., Пушкарев С.В., Сафронов И.Д., Трунов А.Н. Выраженность процессов перекисного окисления липидов и антиоксидантный потенциал у больных с распространенным раком яичников в динамике полихимиотерапии. Сибирский онкологический журнал. 2007;2:42-45. [Lebedeva VA, Pushkarev SV, Safronov ID, Trunov AN. The severity of lipid peroxidation and antioxidant potential in patients with advanced ovarian cancer in the dynamics of polychemotherapy. Sibirskii onkologicheskii zhurnal. 2007;(2):42-45. (In Russ.)].
- 3. Ватутин Н.Т., Склянная Е.В., Эль-Хатиб М.А., Старченко С.В., Макарова М.В. Гепатотоксичность противоопухолевых препаратов: современное состояние проблемы. Российский онкологический журнал. 2016; 21(6):325-333. [Vatutin NT, Sklyannaya EV, El-Khatib MA, Starchenko SV, Makarova MV. Hepatotoxicity of anticancer drugs: current status of the problem. Rossiyskiy onkologicheskiy zhurnal. 2016; 21 (6): 325-333. (In Russ.)]. DOI: 10.18821/1028-9984-2016-21-6-325-333.
- 4. Давыдова Т.В., Матвеева И.И., Грицай А.Н., Погосян Н.Р., Мамедова Л.Т., Кузнецов В.В. Клиническое и диагностическое значение функциональных и конформационных свойств альбумина сыворотки крови у больных раком яичников (пилотное исследование). Опухоли женской репродуктивной системы. 2014;

- 2:59-61. [Davydova TV, Matveeva II, Gritsai AN, Pogosyan NR, Mamedova LT, Kuznetsov VV. Clinical and diagnostic value of the functional and conformational properties of serum albumin in patients with ovarian cancer (a pilot study). Opukholi zhenskoy reproduktivnoy sistemy. 2014; 2: 59-61. (In Russ.)].
- 5. Максимова Е.В. Лекарственные поражения печени у больных раком молочной железы и раком яичников при различных режимах химиотерапии. Крымский терапевтический журнал. 2011;1:89-92. [Maksimova EV. Drug-induced liver lesions in patients with breast cancer and ovarian cancer in different regimes of chemotherapy. Krymskiy terapevticheskiy zhurnal. 2011;1:89-92. (In Russ.)].
- 6. Практические рекомендации по лекарственному лечению злокачественных опухолей (RUSSCO) / под редакцией: В.М. Моисеенко. М.: Общероссийская общественная организация «Российское общество клинической онкологии». 2015; 358-368. [Practical recommendations for the medicinal treatment of malignant tumors (RUSSCO) / edited by: V.M. Moiseenko. M.: All-Russian public organization "Russian Society of Clinical Oncology." 2015; 358-368. (In Russ.)].
- 7. Генинг Т.П., Абакумова Т.В., Долгова Д.Р., Антонеева И.И., Генинг С.О., Пирмамедова С.С., Фомина А.В., Васильева Е.В. Редокс-зависимые процессы в плазме крови, нейтрофилах и эритроцитах больных раком яичников после полихимиотерапии по схеме САР. Антибиотики и химиотерапия. 2014;59:20-25. [Gening TP, Abakumova TV, Dolgova DR, Antoneeva II, Gening SO, Pirmamedova SS, Fomina AV, Vasil'eva EV. Redox-dependent processes in plasma, neutrophils and erythrocytes of patients with ovarian cancer after polychemotherapy according to the CAP scheme. Antibiotiki i khimioterapiya. 2014;(59):20-25. (In Russ.)].
- 8. Симонова Н.В. Фитопрепараты в коррекции процессов перекисного окисления липидов, индуцированных ультрафиолетовым облучением: Дис. ... д-ра биол. наук. Благовещенск. 2012. [Simonova NV. Phytopreparations in the correction of processes of lipid peroxidation induced by ultraviolet irradiation. Diss. Blagoveshchensk. 2012. (In Russ.)].
- 9. Абакумова Т.В., Генинг Т.П., Антонеева И.И., Арсланова Д.Р., Генинг С.О., Емелькин Н.В. Система «Перекисное окисление липидов - антиоксидантов» в организме - опухоленосителе в клинике и эксперименте. Фундаментальные исследования. 2011;11:13-16. [Abakumova TV, Gening TP, Antoneyeva II, Arslanova DR, Gening SO, Yemel'kin NV. System "Lipid peroxidation - antioxidants" in the body - the tumor carrier in the clinic and experiment. Fundamental'nyye issledovaniya. 2011;11:13-16. (In Russ.)].
- 10. Солопова А.Е., Чащин А.А., Солопова А.Г., Макацария А.Д. Современные взгляды на патогенез и возможности диагностики эпителиального рака яичников. Акушерство, гинекология и репродукция. 2016;10(1):75-83. [Solopova AYe, Chashchin AA, Solopova AG, Makatsariya AD. Modern views on the pathogenesis and diagnostic capabilities of epithelial ovarian cancer. Akusherstvo, ginekologiya i reproduktsiya. 2016;10(1):75-83. (In Russ.)].
- 11. Симонова Н.В., Доровских В.А., Бондаренко Д.А., Носаль Л.А., Штарберг М.А. Сравнительная эффективность ремаксола и реамберина при поражении печени четыреххлористым углеродом в эксперименте. Экспериментальная и клиническая фармакология. 2018;81(7):29-33. [Simonova NV, Dorovskikh VA,

- Bondarenko DA, Nosal' LA, Shtarberg MA. Comparative effectiveness of remaxol and reamberin for carbon tetrachloride-induced hepatic injury treatment in experiment. Eksperimental'nava i klinicheskaya farmakologiya. 2018;81(7):29-33. (In Russ.)]. DOI: 10.30906/0869-2092-2018-81-7-29-33
- 12. Доровских В.А., Симонова Н.В., Переверзев Д.И., Штарберг М.А. Сравнительная эффективность цитофлавина и его составных компонентов при окислительном стрессе в эксперименте. Экспериментальная и клиническая фармакология. 2017;80(4):18-22. [Dorovskikh VA, Simonova NV, Pereverzev DI, Shtarberg MA. Comparative effectiveness of cytoflavin and its constituent components in experimental oxidative stress. Eksperimental'naya i klinicheskaya farmakologiya. 2017;80(4):18-22. (In Russ.)].
- 13. Доровских В.А., Симонова Н.В., Переверзев Д.И., Юртаева Е.Ю., Штарберг М.А. Сукцинатсодержащий препарат в коррекции липопероксидации, процессов индуцированных введением четыреххлористого углерода. Бюллетень физиологии и патологии дыхания. 2017;63:75-79. [Dorovskikh VA, Simonova NV, Pereverzev DI, Yurtaeva EYu, Shtarberg MA. Succinate containing drug for correction of lipid peroxidation processes induced by administration of the carbon tetrachloride. Byulleten' fiziologii i patologii dykhaniya. 2017;63:75-79. (In Russ.)]. DOI: 10.12737/article_58e45635ed6673.27662564.
- _ 14. Туманян С.В., Ярцева Д.В. Пути оптмимизации инфузионной терапии у больных раком яичников. Анестезиология и реаниматология. 2015;60(1):55-58. [Tumanyan SV, Yartseva DV. Optimization of infusion therapy in patients with ovarian cancer. Anesteziologiva i reanimatologiya. 2015;60(1):55-58. (In Russ.)].
- 15. Черенков В.Г., Чистякова Л.А. Пути снижения побочных действий полихимиотерапии рака яичников III-IV стадий. В кн.: Клиническая медицина (вопросы клиники, диагностики, профилактики и лечения): сборник научных *трудов.* Великий Новгород. 2001;11:164-167. [Cherenkov VG, Chistyakova LA. Ways to reduce the side effects of polychemotherapy of stage III-IV ovarian cancer. In: Klinicheskaya meditsina (voprosy kliniki, diagnostiki, profilaktiki i lecheniya): sbornik nauchnykh trudov. Velikii Novgorod. 2001;11:164-167. (In Russ.)].
- 16. Бондаренко Д.А., Смирнов Д.В., Симонова Н.В., Доровских В.А., Штарберг М.А. Эффективность реамберина в коррекции процессов перекисного окисления липидов в плазме крови больных раком яичников. Онкология. Журнал имени П.А. Герцена. 2018;6:40-44. [Bondarenko DA, Smirnov DV, Simonova NV, Dorovskikh VA, Shtarberg MA. Efficacy of reamberin in the correction of lipid peroxidation processes in the plasma of patients with ovarian cancer. Onkologiya. Zhurnal im. P.A. Gertsena. 2018;6:40-44. (In Russ.)]. DOI: 10.17116/onkolog2018706140.
- 17. Переверзев Д.И., Доровских В.А., Симонова Н.В., Штарберг М.А. Эффективность цитофлавина в коррекции процессов перекисного окисления липидов в плазме крови больных с острым инфарктом миокарда. Кардиология и сердечно-сосудистая хирургия. 2016;9(5):42-45. [Pereverzev DI, Dorovskikh VA, Simonova NV, Shtarberg MA. Effectiveness of Cytoflavin in the correction of lipid peroxidation processes in the blood of patients with acute myocardial infarction. Kardiologiya i serdechno-sosudistaya khirurgiya. 2016;9(5):42-45. (In Russ.)]. DOI: 10.17116/ kardio20169542-45.