- 1. Организация гериатрической службы.
- 2. Организация лечения и диспансеризации:
 - инвалидов и участников ВОВ,
- лиц, приравненных к участникам ВОВ.
- вдов участников и умерших ветеранов BOB,
 - ветеранов тыла,
 - заслуженных работников РФ, РС(Я),

- деятелей науки и культуры,
- государственных служащих.
- 3. Организация медицинского обеспечения юношей допризывного и призывного возрастов.

Кроме того, больница является организационно-методическим центром по вопросам организации гериатрической помощи, базовой организацией изучения актуальных вопросов гериатрии. Периодически проводятся научно-практи-

ческие конференции, семинары с участием ведущих ученых Якутии и России.

Через «Якутский медицинский журнал» поздравляем всех работников больницы №1 МЗ РС(Я) и её ветеранов, находящихся на заслуженном отдыхе и проживающих в Якутии или в других областях нашей страны, с 75летним юбилеем нашего учреждения. Желаем крепкого здоровья и успехов во всем.

ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

Н.Р Максимова, А.Н.Ноговицына, А.Л.Сухомясова, Е.Е.Гуринова, С.П.Алексеева

КЛИНИЧЕСКИЕ И МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ АСПЕКТЫ НАСЛЕДСТВЕННОГО НАНИЗМА У ЯКУТОВ С МУТАЦИЕЙ В ГЕНЕ *CUL7*

Цель исследования. Клиническое, молекулярно-генетическое изучение наследственного синдрома, характеризующегося низким ростом, аутосомно-рецессивным типом наследования, распространенного в якутской популяции.

Материалы и методы. Материалом для клинического исследования послужили данные 43 генетических карт больных низкого роста с аутосомно-рецессивным наследственным синдромом, с лицевыми дизморфиями и нормальным интеллектом без эндокринологических нарушений. Для молекулярно-генетического анализа использованы ДНК этих 43 больных и 39 их родственников из 37 неродственных семей. Применены клинико-генеалогический, молекулярно-генетический и статистический методы исследования.

Результаты. Проведено клиническое, молекулярно-генетическое изучение наследственного нанизма, получившего наибольшее распространение среди коренного населения Якутии. В результате проведенного молекулярно-генетического исследования у 43 больных и 39 их родственников из 37 семей якутской национальности с наследственным нанизмом установлена молекулярно-генетическая причина - идентифицирована нонсенс-мутация 4582insT в гене *CULT*, ответственном за развитие редкого в мире 3-М синдрома. Клинические данные показывают, что для больных с 3-М синдромом якутской национальности характерны те же признаки, что и для описанных ранее в литературе клинических случаев 3-М синдрома в других популяциях мира, за исключением описанного нами дистресс-синдрома в периоде новорожденности почти у половины больных. Якутские больные с 3-М синдромом имели типичный фенотип, но без характерных для 3-М синдрома рентгенологических признаков (тонкие длинные трубчатые кости и ребра наблюдались только у одного, высокие позвонки - у 4 больных).

Ключевые слова: нанизм, 3-М синдром, якуты, мутация, CUL7.

For the first time the clinical and molecular-genetical investigation of 43 patients and 39 their relatives from 37 unrelated Yakut families with hereditary autosomal recessive nanism in Republic Sakha (Yakutia) were performed. The novel nonsense - mutation 4582insT in gene *CUL7* causing rare in the world 3-M syndrome was identified. The Yakut patients with 3-M syndrome had a typical phenotype, but without typical radiological features (slender tubular bones and edges were ob-served only at one, tall vertebral bodies at 4 patients).

Введение

Нанизм (от греч. nanos – карлик) - заболевания с патологически низ-

МАКСИМОВА Надежда Романовна - к.м.н., врач-генетик первой квалиф. категории, начальник отдела ЯНЦ СО РАМН; НОГОВИЦЫНА Анна Николаевна - к.м.н., врач-генетик высшей квалиф. категории МГК РБ №1-НЦМ, отличник здравоохранения РС(Я), лауреат Государственной премии РС(Я) в области науки и техники; СУ-ХОМЯСОВА Айталина Лукична — к.м.н., врач-генетик первой квалиф. категории, зав. МГК РБ №1-НЦМ; ГУРИНОВА Елизавета Егоровна - врач-генетик МГК РБ №1-НЦМ; АЛЕКСЕЕВА Светлана Петровна - врач-генетик высшей квалиф. категории МГК РБ №1-НЦМ.

ким ростом человека (для мужчин ниже 130 см, для женщин ниже 120 см), обусловленные обычно поражением желёз внутренней секреции или наследственными причинами. Среди наследственных причин нанизма можно выделить 2 группы: хромосомные заболевания с задержкой роста и моногенные. Наследственных заболеваний с низким ростом насчитывается более 600 в Оксфордской базе данных (Oxford Medical Database) и более 760 в международной базе данных Маккьюсика (МІМ). В настоящее время найдены гены более 50 наследственных дисплазий скелета и синдромов, приводящих к низкому росту [6, 12]. Однако эндокриннонеобусловленных аутосомно-рецессивных наследственных синдромов с низким ростом без задержки умственного развития насчитывается не так уж много. Среди них: метафизарная хондродистрофия Маккьюсика (МІМ 250250) [11], болезнь Ларона (МІМ 245590)[6], нанизм Мюлибрея (МІМ 253250)[3], синдром Рассела-Сильвера (МІМ 180860)[6], а также редкий 3-М синдром (МІМ 273750).

3-М синдром – редкое аутосомнорецессивное заболевание, названное в честь первых букв трех авторов (Miller, McKusick, Malvaux), впервые описавших его в 1975 г. [9], характеризующееся лицевыми дизморфиями, пре- и постнатальной гипоплазией и рентгенологическими изменениями в костях (тонкие длинные кости и длинные позвонки). В мировой литературе описано всего около 50 клинических случаев этого редкого заболевания в различных популяциях мира, частота гена неизвестна [4, 7-9, 10, 13-15]. Ген CUL7 (Куллин7), вызывающий это заболевание, был картирован и идентифицирован сравнительно недавно группой ученых из нескольких стран мира [5]. Описано 25 различных мутаций в гене CUL7 у больных из 29 семей из различных стран мира (Тунис, Морокко, Франция, Алжир, Сирия, Поругалия, Германия, Шри-Ланка, Турция, Германия, Австрия, Италия, Суринам, Индия и Бразилия) [5] разной этнической принадлежности.

Патологически низкий рост является одной из частых причин обращения взрослых и детей в медико-генетическую консультацию (МГК) РБ №1-Национального центра медицины Минздрава РС(Я) [2]. В Генетическом регистре наследственной и врожденной патологии Республики Саха(Якутия) насчитывается более 220 больных с различными наследственными и хромосомными формами низкорослости: ахондроплазия, гипохондроплазия, синдром Аарскога, несовершенный остеогенез, диастрофическая дисплазия, синдром Вильямса-Бурена, метафизарный дизостоз Шмида, спондилоэпифизарная дисплазия, синдром Блума, синдром Шерешевского-Тернера, синдром Нунан и другие. Однако одним из частых заболеваний с низким ростом у якутов является наследственный синдром с аутосомно-рецессивным типом наследования с пренатальной и постнатальной гипоплазией, лицевыми дизморфиями, гидроцефальной головой, широкой грудной клеткой, мышечной гипотонией, гиперлордозом, большим животом, брахидактилией, выступающими пятками и нормальным интеллектом без эндокринных нарушений.

Целью данного исследования было клиническое, молекулярно-генетическое изучение наследственного синдрома с низким ростом с аутосомнорецессивным типом наследования, распространенного в якутской популяции.

Материалы и методы

Материалом для клинического исследования послужили данные 43 генетических карт больных низкого роста с аутосомно-рецессивным наследственным синдромом, с лицевыми дизморфиями и нормальным интеллектом без эндокринологических нарушений, консультированных с 1990 г. по настоящее время в МГК РБ№1 - НЦМ РС(Я) и учтенных в Республиканском генетическом регистре наследственной и врожденной патологии Республики Саха(Якутия), фотографии пациентов и рентгенологические снимки костей. Для молекулярно-генетического анализа использованы ДНК этих 43 больных и 39 их родственников из 37 неродственных семей. ДНК взята с письменного согласия больных и их родственников. Выделение ДНК из лейкоцитов периферической крови проводили по стандартной методике неэнзиматическим методом [1].

Молекулярно-генетическая гностика мутации 4582 insT в гене CUL7 проводилась методом полимеразной цепной реакции (ПЦР) с оригинальными олигопраймерами (F - 5`-AGCAAAAGGATATACCAGGAG - 3` и R - 5'- TCCGTCTCTTCTCCAAGTTC-3') с применением анализа полиморфизма длин рестрикционных фрагментов (ПДРФ) с использованием эндонуклеазы Hinfl (Toyobo) и последующей визуализацией в 2%-ном агарозном геле.

Результаты и обсуждение

В ходе анализа генетических карт 43 больных с задержкой роста из 37 неродственных семей выявлено: все больные - коренной национальности (90% - якуты, 10% - эвены и эвенки от смешанных браков). Из них 25 (58%) женского, 18 (42%) - мужского пола. Возраст больных - от 0 до 45 лет. Рост всех родителей средний, в кровном родстве не состоят.

Беременность при данной патологии протекала в основном гладко, в 6 (15%) случаях отмечался токсикоз, в 4 (10%) – гестоз, в 4 (10%) - угроза прерывания беременности. У 8 (20,5%) женщин в анамнезе были спонтанные выкидыши. Срок гестации при беременности варьировал от 35 до 42 недель (в среднем 37 недель); в 87% случаев роды произошли в срок. В большинстве случаев роды были физиологические, за исключением 6 (15%) случаев оперативных родов. У 18 детей (41,9%) была асфиксия в родах и 11(25,6%) новорожденным понадобились реанимационные мероприятия в родильном зале. В 5 семьях дети со схожими клиническими проявлениями, без видимых пороков развития. умерли сразу же после рождения. При рождении рост и масса тела 42 (97%) пациентов были низкими для гестационного возраста (средний рост – 42 см, масса - 2,330 кг). Среднее стандартное отклонение длины тела при рождении было -6,2, варьируя от -12,2 до -1,8. В течение всей жизни среднее значение сигмального отклонения длины тела варьирует от -4, 23 до -6,57. К 18 годам и старше рост больных достигал 133 - 138 см. Окружность головы при рождении была 36,3 см (варьируя от 32 до 37 см), определяющаяся как макроцефалия по отношению к туловищу и низкому росту. Моторное развитие детей в основном протекало по возрасту, иногда с небольшим отставанием, в физическом развитии дети отставали с первых месяцев жизни. Интеллектуальное развитие соответствовало возрасту.

Клинические проявления больных с наследственным нанизмом по возрастным категориям представлены в таблице и на рисунке. У всех больных (100%) был низкий рост с относительно большой головой гидроцефальной формы (81,4%), особенно выраженной в раннем детском периоде. Такие признаки, как короткая и широкая грудная клетка, брахидактилия, микромелия кистей и стоп, выступающие пятки, встречались у всех больных (100%). 95% больных имели характерное лицо, включающее в себя треугольный овал, широкий лоб, гипоплазию скуловых костей, запавшее переносье, мясистый нос, длинный фильтр, полные губы, выступающий подбородок и широкую шею. Гидроцефальная форма головы, широкие густые брови, деформация грудины (килевидная или воронкообразная), поясничный лордоз, мышечная гипотония, гипермобильность мелких и крупных суставов встречались с частотой от 65 до 86%. Другие клинические признаки являлись наименее патогномоничными для данного синдрома, и частота их варьировала в зависимости от возраста. Например, большой живот встречается у всех детей в возрасте только до 5 лет.

В половом развитии пациенты не отстают от сверстников. Менструации у девочек начинаются в среднем в 12-13 лет, при ультразвуковом исследовании размеры матки и яичников соответствуют возрасту и размерам тела. Из наблюдаемых больных у двух

Клинические особенности при первичном осмотре 43 пациентов
якутской национальности с 3-М синдромом

Частота признака (% и количество пациен						
Клинический признак	Возраст при первом осмотре					
F	0-5 лет	6-10 лет	11-15 лет	>= 16 лет	Всего	
Количество пациентов	25	8	5	5	43	
Голова и лицо % (кол-во)						
Гидроцефальная форма	100 (25)	87,5 (7)	60,0 (3)	0	81,4 (35)	
Характерное лицо (треуголь-	100 (23)	07,5 (7)	00,0 (3)	Ü	01,1 (33)	
ное лицо, гипоплазия скуло-						
вых костей, широкий, высту-						
пающий лоб, запавшее пере-	96,0 (24)	87,7(7)	100 (5)	100(5)	95,3 (41)	
носье, мясистый нос, длин-						
ный фильтр, полные губы, выступающий подбородок)						
Гипертелоризм	36.0 (9)	50.0 (4)	20.0(1)	100 (5)	44.1 (19)	
Эпикант	56.0 (14)	12.5 (1)	40.0 (2)	0	39.9 (17)	
Широкие и густые брови	72,0 (18)	50,0 (4)	80,0 (4)	40,0 (2)	65,1 (28)	
Дисплазия ушей	40,0 (11)	25,0 (4)	100 (5)	0	46,5(20)	
Тело % (кол-во)						
Широкая шея	92,0 (23)	100 (8)	100 (5)	100 (5)	95,3 (41)	
Короткая и широкая грудная	100 (25)	100 (9)	100 (5)	100 (5)	100 (42)	
клетка	100 (23)	100 (8)	100 (5)	100 (3)	100 (43)	
Деформация грудины	96,0 (24)	37,5 (3)	60,0 (3)	0	69,8 (30)	
Поясничный гиперлордоз	100 (25)	87,5 (7)	100 (5)	0	86,0 (37)	
Мышечная гипотония	100 (25)	87,5 (7)	100 (5)	0	86,0 (37)	
Брахидактилия	100 (25)	100 (8)	100 (5)	100 (5)	100 (43)	
Микромелия кистей и стоп	100 (25)	100 (8)	100 (5)	100 (5)	100 (43)	
Четырехпальцевая складка	56 (14)	75,0 (6)	40,0 (2)	0	51,2 (22)	
Синдактилия 5 пальца	12,0 (3)	0	20,0(1)	0	9,3 (4)	
Большой живот	100 (25)	0	0	0	58,1 (25)	
Выступающие пятки	100 (25)	100(8)	100 (5)	100 (5)	100 (43)	
Врожденный порок сердца	16,0 (4)	0	0	0	9,3 (4)	
Гепатомегалия	20,0 (5)	0	0	0	11,6 (5)	
Плоскостопие	36,0(9)	37,5 (3)	20,0(1)	0	30,2 (13)	
Конституция % (кол-во)						
Низкий рост	100 (25)	100 (8)	100 (5)	100 (5)	100 (43)	
Постнатальная гипоплазия	100 (25)	100 (8)	100 (5)	100 (5)	100 (43)	
Рентгенологические особенно			100 (3)	100 (3)	100 (43)	
Сколиоз	4.0 (1)	37,5 (3)	60,0 (3)	0	16,3 (7)	
Тонкие трубчатые кости,	, , ,					
ребра	0	0	20,0 (1)	0	2,3 (1)	
Расширенные метафизы	8.0 (2)	12.5 (1)	60.0 (3)	100 (5)	25.6 (11)	
Высокие позвонки и снижен-	, ()	, ()	, ()		, , ,	
ный передне-задний диаметр	8,0 (2)	0	40,0 (2)	0	9,3 (4)	
в поясничном регионе Закрытая спинномозговая						
грыжа в грудопоясничном	8,0 (2)	12,5 (1)	60,0 (3)	60,0 (3)	20,9 (9)	
отделе	, , ,			, , ,	, , ,	
Соответствие костного воз-	0	12,5 (1)	60,0 (3)	0	9,3 (4)	
раста паспортному	1			I		

женщин наступала беременность (у одной - прервана по социальным показаниям в 20 недель. вторая - родила ребенка с нормальным ростом), у одного мужчины имеется семья и ребенок с нормальным ростом. Лабораторные исследования минерального обмена, гормонов - в пределах возрастных норм. При рентгенологическом исследовании костный возраст слегка отстает в раннем детском возрасте (от 0 до 5 лет) и затем после 10 лет - соответствует паспортному возрасту, после 16 лет - опережает. По данным рентгенологической картины были описаны расширенные метафизы у 11 больных (25,6%), тонкие трубчатые кости у 1 (2,3%), высокие позвонки и сниженный передне-задний диаметр в грудопоясничном отделе у 4 (9,3%), закрытая спинномозговая грыжа у 9 больных (20, 9%).

Дети поступают в школу с опозданием на один год из-за задержки роста, учатся в общеобразовательной школе. Успеваемость по всем школьным предметам средняя. После окончания школы двое поступили в среднеспециальное заведение и работают по своей специальности, двое - учатся в высшем учебном заведении.

Больные с очень низким ростом испытывают большие трудности в социальной адаптации, не могут выполнять физическую работу.

Так как клинические признаки данного заболевания у якутов были схожи с клиникой редкого в мире заболевания 3-М синдром, нами было решено провести молекулярно-генетические исследования по выявлению молекулярно-генетической причины на-

Клинические проявления 3-М синдрома у якутских больных в различные возрастные периоды жизни. А: Новорожденный с 3-М синдромом. Обращает на себя внимание гидроцефальная форма головы, относительно короткое туловище, короткая шея, короткая и широкая грудная клетка, увеличенный живот, выступающие пятки. Б: Девочка 5 лет с 3-М синдромом: низкий рост, короткая шея, короткая грудная клетка, увеличенный живот, микромелия кистей и стоп, поясничный гиперлордоз, выступающие пятки. С: Мужчина (39 лет) с 3-М синдромом: низкий рост, короткая шея, короткая и широкая грудная клетка, деформированная грудина, микромелия кистей и стоп

следственного синдрома в якутской популяции. В результате проведенных молекулярно-генетических исследований нами была идентифицирована новая мутация 4582 insT в гене CUL7, который был недавно определен как ген, вызывающий 3-М синдром в других популяциях мира [5]. Эта мутация находится в 25 экзоне и приводит к стоп - кодону в позиции Q1553X. Было установлено, что у всех 43 обследованных больных мутация 4582insT находится в гомозиготном состоянии, а у их родителей - в гетерозиготном.

Выводы

Проведено клиническое. молекулярно-генетическое изучение наследственного нанизма, получившего наибольшее распространение среди коренного населения Якутии. В результате проведенного молекулярно-генетического исследования у 43 больных и 39 их родственников из 37 семей якутской национальности с наследственным нанизмом установлена молекулярно-генетическая причина идентифицирована нонсенс-мутация 4582insТ в гене *CUL7*, ответственном за развитие редкого в мире 3-М синдрома. Клинические данные показывают, что для больных с 3-М синдромом якутской национальности характерны те же признаки, что и для описанных ранее в литературе клинических случаев 3-М синдрома в других популяциях мира [4, 7-10, 13-15], за исключением описанного нами дистресссиндрома в периоде новорожденности почти у половины больных. Патогномоничные для данного синдрома рентгенологические признаки не характерны для якутских больных (расширенные метафизы, тонкие трубчатые кости, высокие позвонки и сниженный передне

- задний диаметр в грудопоясничном отделе), что может быть связано с особенностями клиники или с низкой осведомленностью врачей-рентгенологов в отношении данной патологии.

Таким образом, впервые найденная новая мутация в гене CUL7 у больных с 3-М синдромом в якутской популяции, отличная от описанных ранее, позволила выставить точный диагноз 43 пациентам коренной национальности в Республике Саха (Якутия), провести дифференциальную диагностику с другими формами нанизма, разработать быстрый, точный и доступный способ ДНК-диагностики этого заболевания с целью дальнейшего проведения пренатальной ДНК-диагностики 3-М синдрома в отягощенных семьях. Выяснение причин высокого накопления редкого в мире наследственного 3-М синдрома среди коренного населения Республики Саха (Якутия) требует дальнейшего изучения.

Литература

- 1. Карпищенко А.И. Медицинские лабораторные технологии / А.И. Карпищенко.- Спб.: Интермедика, 1999. - 604 c.
- 2. Ноговицына А.Н. Наследственная патология семей, обратившихся в МГК Национального центра медицины Республики Саха (Якутия) с 1990 по 1998 г. / А.Н. Ноговицына, Н.Р. Максимова, М.В. Ханды // Дальневост. мед. журн. -1999. -№ 1.- С.26-30.
- 3. Avela K. Gene encoding a new RING-B-box-coiled-coil protein mutated in mulibrey nanism / K. Avela [et al.] //Nature Genet.- 2000.- № 25.- P. 298-301.
- 4. Hennekam R.C. Further delineation of the 3M syndrome with review of the

- literature / R.C. Hennekam, J.B. Bijilsma. J. Sparnger // Am. J. Med. Genet.- 1987.-№28.- P. 195-209.
- 5. Huber C. [et al.] // Nature Genet.-2005.- №37.- P. 1119-1124.
- 6. Kant S.G. Genetic Analysis of Short Stature / S.G. Kant [et al.] // Hormone Research.- 2003.- №60.-P.157-165.
- 7. Marik I. 3-M syndrome in two sisters / Marik I. [et al.] // J.Paediatr. Child Health.- 2002.- №38.- P. 419 - 422.
- 8. **Meo F.P.** 3-M syndrome: a prenatal ultrasonographic diagnosis / F.P. Meo V., Pinto, V. D'Addario // Prenat. Diagnos. -2000.- №20.- P. 921-923.
- 9. Miller J.D. The 3-M syndrome: a heritable low birthweight dwarfism / J.D. Miller [et al.] // Birth Defects Orig. Artic. Ser. -1975. -№11. -P.39-47.
- 10. Mueller R.F. The 3-M syndrome: risk of intracerebral aneurism? / R.F. Miller [et al.] // J.Med.-1992.- №29.- P. 425-427.
- 11. Ridanpaa M. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia / Ridanpaa M. [et al.] // Cell. -2001.- №104(2).- P. 195-203.
- 12. Superti-Furga A. Molecular-Pathogenetic Classification of Genetic Disorders of the Skeleton / A. Superti-Furga, L. Bonafe, D.L. Rimoin // Am. J. Med. Gen.-2001.- №106.- P. 282-293.
- 13. Spranger J. A new familial intrauterine growth retardation syndrome the "3 M syndrome" / J. Spranger, J.M. Opitz, A. Nourmand // Eur. J. Pediatr. -1976.-№123.- P. 115-124.
- 14. Van der Wal G. 3 M syndrome: des of 6 new patients with review of the literature / G. Van der Wal [et al.] // Clin. Dysmorphol. -2001.- №10.- P. 241-252.
- 15. Winter R.M. The 3 M syndrome / R.M. Winter [et al.] // J. Med. Genet. -1984.- № 21.- P.124-128 .

