М.В. Щелчкова, М.С. Находкина

ХИМИЧЕСКАЯ И МИКРОБИОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ВОДЫ ОЗЕРА МЮРЮ И ВОДОХРАНИЛИЩА КУОСАГАС (УСТЬ-АЛДАНСКИЙ РАЙОН)

тов, аммония и нефтепродуктов [4]. Из микробиологических показателей определяли общее микробное число (ОМЧ), общие колиформные (ОКБ) и термотолератные бактерии (ТКБ), колифаги и патогенную микрофлору [2]. Результаты и обсуждение. Озеро Мюрю — крупнейшее термокарстовое озеро Якутии. Оно издавна является местом поселения якутов В настоя-

Результаты и обсуждение. Озеро Мюрю – крупнейшее термокарстовое озеро Якутии. Оно издавна является местом поселения якутов. В настоящее время на его берегах расположены пять населенных пунктов с численностью населения около 9 тыс. человек. Озеро находится в стадии

усыхания, имеет площадь зеркала $12,1 \text{ км}^2$ и глубину 7,7 м.

Наши исследования показали, что вода оз. Мюрю характеризуется как жесткая, щелочная, гидрокарбонатномагниевая. Она обогащена органикой, взвешенными веществами, коллоидными соединениями железа, водорослями и микроорганизмами. В связи с этим показатели цветности, мутности и окисляемости характеризуются высокими значениями во все сезоны года, превышающими предельно допустимые нормы в 2-5 раз (табл. 1).

Таблица 1

Химические свойства воды озера Мюрю и водохранилища Куосагас (n=9)

Показа-		Оз. Мюрю			Водохранилище Куосагас			
тели	Норма	Глуби- на, м	M Lim		Глуби- на, м	M	Lim	
	6-9	0,5	9,1	8,7-9,6	0,5	9,2	8,5-10,2	
рН		1,5	8,6	8,0-9,2	2,0	9,9	8,6-9,7	
		3,0	9,0	8,7-9,2				
Жесткость, мг-экв/дм	Не более 7	0,5	11,45	7,90-18,40	0,5	3,36	2,16-4,20	
		1,5	11,82	9,06-18,06	2,0		1,20-2,99	
		3,0	12,56	8,06-18,26	2,0	2,68	1,20-2,99	
Магний, мг/дм	Не более 50,0	0,5	151,82	44,99-202,20	0.5	20.11	16 55 45 22	
		1,5	149,90	49,80-200,00	0,5	28,11	16,55-45,23	
		3,0	143,50	1,20-212,10	2,0	22,89	6,08-45,82	
Кальций, мг/дм	Не норми- руется	0,5	35,34	13,03-56,51	0.5	14,28 12,88	0,20-31,26	
		1,5	43,05	12,22-85,51	0,5		10,82-14,03	
		3,0	51,84	8,22-134,37	2,0			
Железо, мг/дм	Не более 0,3	0,5	0,55	0,05-1,20	0,5	0.26	0,06-1,50	
		1,5	0,41	0,06-0,80		0,36	0,06-1,30	
		3,0	0,41	0,07-0,90	2,0	0,25	0,04-0,92	
Хлориды, мг/дм	Не более 350	0,5	41,07	33,20-49,70	0,5 2,0	19,12 21,09	12,00-28,80	
		1,5	40,22	32,10-49,60			12,50-27,50	
		3,0	40,52	30,90-50,60	2,0		12,30-27,30	
Сульфаты, мг/дм	Не более 500	0,5	12,69	11,00-13,30	0,5	8,56 6,91	5,00-19,45	
		1,5	12,92	12,20-13,10	2,0		5,00-10,45	
		3,0	12,82	11,20-13,60	2,0	0,71	5,00-10,45	
Карбо- наты,	Не норми- руются	0,5	898,3	744,4-1183,8	0,5	285,8	262,4-381,2	
		1,5	833,5	740,0- 900,5	2,0		202,4 301,2	
мг/дм		3,0	838,9	735,0- 900,7	2,0		_	
Марганец, мг/дм	Не более 0,5	0,5	0,014	0,005-0,090	0,5	0,012	0,006-0,018	
		1,5	0,005	0,002-0,005	2,0	0,007	0,002-0,017	
		3,0	0,005	0,004-0,005	2,0	0,007	0,002 0,017	
Фтор, мг/ дм	Не более 1,2	0,5	0,47	0-1,30	0,5	0,24	0,02-0,33	
		1,5	0,18	0-0,40	2,0	0,30	0,10-0,54	
		3,0	0,09	0-0,25	2,0	0,50	0,10 0,54	
Нитриты, мг/дм	Не более 3,0	0,5	0,010	0-0,023	0.5	0,130	0,003-0,500	
		1,5	0,006	0-0,020	2,0	0,130	0,003-0,500	
		3,0	0,006	0-0,022	2,0	0,130	0,001-0,500	
Нефтепро-	Не более	0,5	0,006	0-0,033	0,5	0,012	0-0,32	
дукты,	0,1	1,5	0	0-0	2,0		0-0,32	
мг/дм	0,1	3,0	0	0-0	2,0		0.0	

Введение. Проблема безопасного и качественного водообеспечения населения Республики Саха (Якутия) имеет непреходящее актуальное значение. Она вписывается не только в систему регионального здравоохранения, но и в целостную систему Госсанэпиднадзора. В решении этой проблемы важное значение имеет мониторинг качества воды, позволяющий своевременно проводить профилактические мероприятия и разрабатывать меры по устранению недостатков. Исследования последних лет показывают, что при огромных ресурсах пресной воды в Якутии (более 700 тыс. рек и 800 тыс. озер) состояние питьевого водоснабжения населения с гигиенических позиций является неудовлетворительным. Это связано с эпидемической ненадежностью традиционно используемых водоисточников в результате их многолетнего загрязнения и отсутствия эффективных технологий очистки воды [1,5,6].

Цель нашей работы состояла в изучении санитарно значимых химических и микробиологических показателей воды оз. Мюрю и водохранилища Куосагас, расположенных на территории с. Борогонцы – административного центра Усть-Алданского улуса. На основе этих данных оценивали качество воды и пригодность ее для использования человеком, а также характер загрязнения водоемов и эффективность существующих мер по их охране.

Материалы и методы. Исследования воды оз. Мюрю и водохранилища Куосагас проводили в 2005-2007 гг. в сезонной динамике. Отбор проб производили весной (в марте или апреле), летом (в июне), осенью (в сентябре), зимой (в январе) с глубины 0,5; 1,5-2 и 3 м. В пробах определяли следующие химические показатели: цветность, мутность, окисляемость, рН, жесткость, содержание кальция, магния, железа, хлоридов, сульфатов, карбонатов, марганца, фтора, нитри-

ЩЕЛЧКОВА Марина Владимировна – к.б.н., доцент МИ ЯГУ; НАХОДКИНА Маргарита Семеновна – врач-бактериолог филиала ФГУЗ «Центр гигиены и эпидемиологии в РС (Я)» в Усть-Алданском районе.

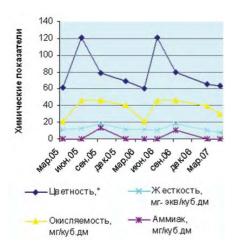


Рис. 1. Сезонная динамика химических параметров воды оз. Мюрю (на глубине 0,5 м)

Сезонные изменения характеризуются повышением жесткости, цветности, мутности и окисляемости воды летом и осенью. Это объясняется эфтрофизацией озера, т.е. обогащением его биогенными элементами за счет стоков при таянии снега и в период выпадения дождей. Об эвтрофизации свидетельствует также «цветение» воды, которое наблюдается в конце июня - начале июля. В результате этого качество воды и условия жизни гидробионтов в озере ухудшаются. Осенью в воде оз. Мюрю возрастает содержание аммиака, что свидетельствует о загрязнении его органическими веществами животного происхождения - отходами животноводства и бытовыми стоками (рис. 1).

В тесной корреляции с химическими показателями находятся микробиологические показатели, которые оценивали по общему микробному числу. Полученные нами данные показывают, что вода оз. Мюрю содержит повышенное количество бактерий, численность которых возрастает в летний и осенний периоды (рис.2, а). В это же время в воде возрастает содержание общих колиформных и термотолерантных бактерий (рис. 2, б). Их количество превышает допустимые нормы

примерно в 2-2,5 раза. Данные группы бактерий являются типичными обитателями кишечника животных, и повышение их содержания в воде говорит о фекальном загрязнении озера. Патогенные бактерии и колифаги во все сезоны года в озере не обнаружены.

Профильное распределение микрофлоры показало, что наиболее высокая концентрация бактерий содержится в верхнем (50 см) слое воды, что связано с влиянием комплекса физических факторов: хорошей освещенностью, прогреваемостью, содержанием растворенных газов. С глубиной численность микроорганизмов закономерно снижается.

Таким образом, эпидемиологическая обстановка оз. Мюрю по микробиологическим показателям в летнее время оценивается как неблагоприятная. Однако осенью и зимой она соответствует норме в результате самоочищения озера. Самоочищение - это разложение органических веществ и уменьшения численности бактерий различных видов под действием аутохтонной (собственной) сапрофитной микрофлоры озера. Об интенсивности процессов самоочищения можно судить по соотношению общей численности бактерий, выросших при температуре +20°C, к общей численности бактерий. выросших при температуре +37°C. Установлено, что процессы самоочищения идут активно, если это отношение равно 4 и выше. Наши исследования показали, что самоочищение в оз. Мюрю наиболее активно протекает летом и осенью, что характерно для естественных водоемов (табл. 2).

Водохранилище Куосагас в отличие от оз. Мюрю имеет искусственное происхождение. Оно было создано в 1998 г. как основной резервуар питьевой воды, имеет водоизмещение 959 тыс. м²,

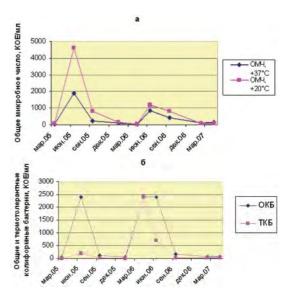
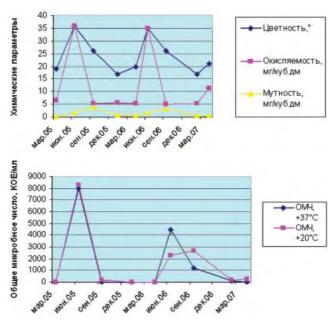


Рис 2. Сезонная динамика микробиологических параметров воды оз. Мюрю (на глубине 0,5 м): а - общее микробное число; б - общие и термотолерантные колиформные бактерии

заполнено ленской водой. Вода водохранилища характеризуется как мягкая, щелочная, гидрокарбонатномагниевая, слабоминерализованная (табл. 1). Наши исследования и исследования предыдущих лет показывают, что динамика органолептических показателей, косвенно характеризующих органическое загрязнение воды, не имеет тенденции к ухудшению. Но в летнее время в отдельных пробах установлено превышение нормы по цветности, окисляемости, мутности, а также по общему микробному числу (рис. 3).


Причиной этого явления может быть как естественная эвтрофизация, так и невыполнение режимных мероприятий в зоне санитарной охраны водохранилища (летом в водохранилище купаются люди, моют машины). Фекальное загрязнение воды отсутствует, так как содержание нитритов, аммиака, колиформных и термотолерантных бактерий не превышает ПДК. Патогенная микрофлора также не обнаруживается. Вместе с тем процессы самоочищения в водохранилище нарушены, что объясняется искусственным происхождением водоема и незрелостью биоценозов, в том числе и микробных (табл. 2).

Заключение. В результате проведенных исследований было показано, что вода в оз. Мюрю и в водохранилище Куосагас различается по химическому составу и микрофлоре. Вода оз. Мюрю жесткая, гидрокарбонатно-магниевая, щелочная, слабоминерализованная с повышенной цветностью, мутностью

Таблица 2

Самоочищение (отношение ОМЧ +20°С к ОМЧ +37°С) озера Мюрю и водохранилища Куосагас

Глуби-	Дата отбора проб											
на, м	14.03.05	06.06.05	09.09.05	21.01.06	05.04.06	10.06.06	21.09.06	14.02.07	05.04.07			
Оз. Мюрю												
0,5	1,5	2.4	3,8	1,1	0,8	1,4	1,9	0,6	0,6			
1,5	0	77,3	2,4	1	0	26,8	1,3	3,6	0,5			
3,0	4	2,3	4	0	0	28,6	8,6	0	0.2			
Водохранилище Куосагас												
0,5	0	1,0	0	1,6	0	0,5	2,3	1,8	0			
2,0	0	3,2	1,9	1	0	2,0	2,2	0	0			

Рис. 3. Сезонная динамика химических параметров (а) и общего микробного числа (б) воды водохранилища Куосагас (на глубине 0,5 м)

и окисляемостью, обогащена микроорганизмами, в том числе условно патогенными. Оз. Мюрю загрязнено неочищенными хозяйственно-бытовыми и сельскохозяйственными сточными водами, что создает предпосылки для распространения острых кишечных инфекций. Вода оз. Мюрю в соответствии с санитарно-гигиеническими нормами не может быть использована для питья и может применяться лишь в хозяйственных целях.

Вода водохра-Куосагас нилиша мягкая, гидрокарбонатно-магниевая, щелочная, слабоминерализованная с нормальной цветмутностью ностью. окисляемостью, обшее количество микроорганизмов высокое, но условно патогенная флора отсутствует. В летний период отдельные (цветхимические ность, мутность) и микробиологические (OMY) показатели МОГУТ превышать допустимые нормы, поэтому вода водохранилища Куосагас может применяться для питья только поспе обеззаражи-

вания. Производство очищенной воды в с. Борогонцы уже начато ОАО «Легой». Вода выпускается под одноименной маркой «Легой», и как показывают химические исследования, характеризуется хорошим качеством [3]. Однако широким массам населения бутилированная вода «Легой» недоступна ввиду относительно высокой цены.

Нами установлено также, что существующая система охраны водохранилища Куосагас неэффективна и требует усовершенствования. Это особенно актуально, так как водоем имеет искусственное происхождение и характеризуется слабыми темпами самоочищения воды, что определяет его высокую чувствительность к антропогенному загрязнению.

Литература

- 1. Астафьев В.А. Загрязнение объектов окружающей среды и заболеваемость инфекциями с водным путем передачи / В.А. Астафьев, Е.Д. Савилов // Материалы IX съезда Всероссийского научно-практического общества эпидемиологов, микробиологов и паразитологов.- М.: Санэпидмедиа, 2007. Т.2. С. 210-211.
- 2. **Методические** указания МУК 4.2.1884-04. Санитарно-микробиологический и санитарно-паразитологический анализ воды поверхностных водных объектов. М.: Минздрав России, 2004. 26 с.
- 3. Новгородов П.Г. О качестве бутилированных питьевых вод Якутии / П.Г. Новгородов // Наука и техника в Якутии. 2006. №2 (11). С. 96-99.
- 4. **Новиков Ю.В.** Методы исследования качества воды водоемов / Ю.В. Новиков, К.О. Ласточкина, З.Н. Болдина. М.: «Медицина», 1990. 400 с.
- 5. Прокопьева М.В. Гигиеническая оценка антропогенного загрязнения водной экосистемы реки Лена: автореф. дис... канд. мед. наук / М.В. Прокопьева. М.: Науч. центр. мед. экологии ВСНЦ СО РАМН, 2004. -18 с.
- 6. Духанина А.В. Санитарно-вирусологическая характеристика реки Вилюй / А.В. Духанина и [др.] // Материалы IX съезда Всероссийского научно-практического общества эпидемиологов, микробиологов и паразитологов.- М.: Санэпидмедиа, 2007. Т.2. С.230-231.

О.Н. Иванова, П.Г. Петрова, М.Ю. Тарасов

АНАЛИЗ ЗАБОЛЕВАЕМОСТИ ВИРУСНЫМИ ИНФЕКЦИЯМИ ВЕРХНИХ ДЫХАТЕЛЬНЫХ ПУТЕЙ ДЕТЕЙ РЕСПУБЛИКИ САХА (ЯКУТИЯ)

Проблема высокой инфекционной заболеваемости детского населения имеет большое медико-социальное значение, так как она не только в значительной степени обусловливает уровень общей заболеваемости детей, но и является важным фактором риска развития в последующем хронических заболеваний (Балаболкин И.И., 2000).

ИВАНОВА Ольга Николаевна — д.м.н., проф., зав.кафедрой МИ ЯГУ; ПЕТРОВА Пальмира Георгиевна — д.м.н., проф., директор МИ ЯГУ; ТАРАСОВ Михаил Юльевич — зам.гл. врача по организационнометодической работе Детской городской клинической больницы.

Однако несмотря на большую научно-практическую значимость проблемы, до сих пор остаются малоизученными вопросы влияния социально-гигиенических и медико-биологических факторов риска на развитие инфекционной патологии у детей (Мизерницкий Ю.Л., 2004). Профилактика ОРВИ имеет существенное медицинское и экономическое значение. Медицинское значение заключается в том, что благодаря профилактике можно достичь значительного снижения заболеваемости и удельного веса тяжелых форм болезни, уменьшения заболеваемости пневмоний, случаев

госпитализации и смерти. Известно, что основной функцией иммунной системы является защита генетической целостности организма от проникновения инородных антигенов. Такая защита обеспечивается сложной системой органов, клеток и факторов. При определении эффективных профилактических и лечебных мероприятий для детей, часто болеющих респираторными заболеваниями, необходим поиск индивидуальных методов оздоровления с учетом этиологических и патогенетических механизмов заболевания, а также факторов внешнего окружения, формирующих предрасполо-