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NEUROINFLAMMATION AND BRAIN 
FUNCTION: POSSIBLE IMPLICATIONS
IN CHILDREN INFECTED WITH COVID-19

COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), affects children differently than adults, with milder symptoms. However, several cases of 
neurological manifestations with neuroinflammatory syndromes, such as multisystem inflamma-
tory syndrome (MIS-C), have been reported following infection. As with other viral infections such 
as rubella, influenza, and cytomegalovirus, SARS-CoV-2 causes a massive release of pro-in-
flammatory cytokines that affect microglial function, which can be critical for brain development. 
Along with viral induction of neuroinflammation, other non-infectious conditions may interact to 
cause additional inflammation, such as imbalances in fatty acid and polyunsaturated fatty acid 
diets and alcohol consumption during pregnancy. In addition, transient thyrotoxicosis caused 
by SARS-CoV-2 has been reported, with secondary autoimmune hypothyroidism that may go 
unnoticed during pregnancy. Together, these factors may represent an additional risk of infection 
by influencing neurodevelopmental mechanisms such as synaptic pruning and the formation of 
neuronal ensembles. In this review, we discuss these conditions to consider and the possible 
occurrence of neurodevelopmental disorders in children infected with COVID-19.
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nutrition.
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Introduction. COVID-19 is a sys-
temic disease caused by severe acute 
respiratory syndrome coronavirus 2, 
which belongs to the betacoronavirus ge-
nus [3]. The most common neurological 
symptoms in response to SARS-CoV-2 
infection include: headache, anosmia, 
impaired consciousness, infectious en-
cephalopathies, and neuroinflammatory 
syndromes such as acute demyelinating 

encephalomyelitis [1]. A biomarker study 
(NfL, intraaxonal marker of neuronal in-
jury; glial fibrillar acidic protein; GFAp, 
marker of astrocytic activation/damage) 
also provided evidence of neuronal dam-
age and glial cell activation in patients 
with COVID-19 [39], strongly suggesting 
that SARS-CoV-2 has neurotropic activ-
ity. In addition, SARS-CoV-2 has been 
shown to be able to infect human neu-
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ral progenitor cells [57]. Like SARS-CoV, 
SARS-CoV-2 uses the angiotensin-con-
verting enzyme receptor (ACE2) for cell 
invasion by binding to it via the spike 
(S) protein [10]. In the central nervous 
system (CNS), glial cells and neurons 
express this receptor [19]. It is not yet 
known which pathway SARS-CoV-2 uses 
to reach the nervous system, but there 
are 2 theories. According to the first one, 
the virus enters the CNS by the hematog-
enous route, in which it can penetrate into 
leukocytes and cells of the blood-brain 
barrier (BBB), or, in the second case, the 
virus can migrate to the CNS via axonal 
transport [67].

SARS-CoV-2 infection in children.
Children are less likely to develop se-
vere COVID-19, but the main question 
that causes much controversy is related 
to the long-term consequences of mild or 
subclinical infection remains unresolved. 
In the child's brain, complex neural net-
works are subject to intensive modern-
ization, which modulates the activity of 
neurons and immunological complexes 
of the CNS, such as microglia, cyto-
kines, chemokines, the complement sys-
tem, and peripheral immune cells [18], 
which further leads to synaptic pruning 
(pruning) and the formation functional 
neuronal ensembles [63]. In pathologi-
cal conditions, some maternal cytokines 
and leukocytes cross the placenta and 
may impair fetal development [28]. In 
addition, ACE2 expression is intense in 
the placenta [5], suggesting a possible 
route for fetal infection with SARS-CoV-2 
via vertical transmission [59]. There are 
now several case reports suggestive of 
intrauterine infection [49,66], and placen-
tal viremia has been confirmed by r-PCR 
and the presence of inflammatory cells 
in the cerebrospinal fluid along with neu-
rological manifestations consistent with 
those described in adult patients [66 ]. 
In addition, during maternal infection, fe-
tal microglia can be directly activated by 
viruses or cytokines and microchimeric 
maternal cells [28].

Since the beginning of the COVID-19 
pandemic, it has been observed that in 
children, “subclinical infection” is either 
asymptomatic or mild [6]. Children with 
subclinical symptoms are potential car-
riers of the virus, but with a lower rate 
of infectivity than adult patients with a 
pronounced clinical picture, as was char-
acteristic of the influenza virus [62]. In 
addition, children and adolescents with 
asymptomatic COVID-19 may develop 
a condition called multisystem inflamma-
tory syndrome (MIS-C), with clinical and 
laboratory features that are not similar 
to those seen in Kawasaki disease and 

toxic shock syndrome [38]. Among the 
main symptoms associated with general 
systemic inflammation in blood vessels 
throughout the body, Kawasaki syndrome 
can cause a severe acute complication of 
encephalopathy [31]. The generalized 
vascular disorder caused by Kawasaki 
syndrome, as well as the complications 
that affect the body of a child infected 
with COVID-19, can also potentially alter 
the function of the neurovascular block, 
which plays an important role in brain 
development, and thereby contribute to 
an increased risk of late disorders. de-
velopment of the nervous system. As 
with COVID-19, severe forms of H1N1 
influenza are also characterized by a cy-
tokine storm and multiple organ failure as 
a result of increased vascular permeabil-
ity. Wang S. et al. it was theorized that 
BBB damage is the result of systemic 
exposure to pro-inflammatory cytokines 
produced in the lungs [30].

An additional possible complication in 
the mother's body during COVID-19 in-
fection is associated with the expression 
of the ACE2 receptor in the thyroid gland, 
which has one of the highest expression 
levels of this receptor [20]. It has been 
described that SARS-CoV-2, like many 
other viral infections, may be associated 
with the development of subacute thy-
roiditis (SAT), which, although a self-limit-
ed and generally undiagnosed condition, 
can subsequently lead to autoimmune 
hypothyroidism [61]. The development of 
hypothyroidism in pregnant women de-
serves special attention, since congenital 
fetal hypothyroidism is the main cause 
of non-genetic treatable mental retarda-
tion in children [4]. The thyroid hormones 
thyroxine (T4) and triiodothyronine (T3) 
are essential for normal brain develop-
ment [54], and their deficiency is associ-
ated with a delay in the development of 
sensory, motor and cognitive skills [33], 
reflecting the involvement of the latter in 
several processes such as neurogene-
sis, cell differentiation, migration, synap-
togenesis and myelination, as well as the 
mechanisms of synaptic plasticity [13]. In 
addition, thyroid hormones may influence 
the development and function of microg-
lia, as it has been demonstrated that hy-
pothyroidism can change microglia mor-
phology to a pro-inflammatory phenotype 
[52] and microglial function in general 
[16]. Thus, hypothyroidism secondary 
to viral invasion and the development of 
subacute thyroiditis may be a very strong 
endogenous correlate involved in fetal 
brain dysfunction.

Neuroinflammation and microglial 
dysfunction affect brain development 
and plasticity. Localization of the ACE2 

receptor in microglia [62] increases 
the possibility of its direct activation by 
SARS-CoV-2, which may increase the 
risk of late neurodegenerative diseas-
es, as shown for other viral infections 
[18]. Viruses such as Zika virus (ZIKV), 
cytomegalovirus, and rubella are able to 
cross the placental barrier and/or BBB 
and reach the CNS [37]. In ZIKV infec-
tion, along with damage to progenitor 
cells, an increase in neuroinflammation is 
observed, which disrupts the physiolog-
ical role of microglia during brain devel-
opment [69]. The same is true for other 
RNA viruses, such as cytomegalovirus 
[2]. It is possible that these data suggest 
that the inflammation caused by a viral 
infection will be more detrimental to the 
development of the nervous system than 
the direct cytopathic effect of the virus on 
neurons.

At the end of the gestational and early 
early postnatal periods, the homeostat-
ic function of microglia plays an active 
physiological role in synaptic pruning 
and neural network formation [35], being 
highly reactive to its microenvironment. 
Abnormal microglial responses during 
synaptic remodeling during critical peri-
ods of development can lead to the emer-
gence of inadequate neural networks that 
increase the risk of developing neurolog-
ical and psychiatric disorders [46]. Thus, 
prenatal or perinatal infections can lead 
to impaired physiological functions of mi-
croglia, which is an important risk factor 
for the late onset of diseases such as 
schizophrenia, autism spectrum disorder 
(ASD), and attention deficit/hyperactivity 
disorder (ADHD) [18].

Viral infections affecting the brain in-
duce the phagocytic activity of microg-
lia, which is involved in the elimination 
of pathogens and cellular debris [14]. 
Microglia can also promote neurogene-
sis and induce neurotoxicity through the 
release of oxidants, which in turn can 
activate inflammation [40]. A triggering 
receptor expressed on myeloid cells 2 
appears to be required for microglia-me-
diated synaptic pruning during brain 
development [63]. In a mouse model of 
coronavirus infection, it was shown that 
the microglia-associated triggering re-
ceptor expressed on myeloid cells 2 and 
DAP12 (12 kDa DNA activating protein) 
were among the most highly expressed 
genes [8]. Taken together, these studies 
suggest that microglial function is mod-
ulated by viral infections during develop-
ment and may be associated with long-
term complications in children infected 
with COVID-19.

The formation of microglia can also be 
influenced by T-lymphocytes involved in 
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its various functions at the early stages 
of development [36]. Indeed, the pop-
ulation of T cells that act as “catchers” 
in the CNS, localized both in the brain 
parenchyma and in the choroid plexus 
and meninges, are associated with the 
maintenance of functional neuroplastici-
ty in a healthy brain. These T cells can 
also stimulate peripheral immune cells 
through a complex signaling pathway 
with the choroid plexus, releasing IFN-Ƴ 
[27], and promoting plasticity through the 
release of IL-4 [51]. However, the “cy-
tokine storm” mechanism in the patho-
genesis of SARS-CoV-2 infection can 
disrupt the normal cytokine-mediated 
cross-pooling in the choroid plexus, when 
IFN-Ƴ, together with IL-6, is one of the 
main active molecules of the pro-inflam-
matory profile. Also, a group of scientists 
found high levels of IL-6 and INF-Ƴ in the 
CNS of K18-hACE2 transgenic mice in-
fected with SARS-CoV [58].

Dietary modulation of neuroinflam-
mation. Localization of the ACE2 recep-
tor in microglia [62] increases the possibil-
ity of its direct activation by SARS-CoV-2, 
which may increase the risk of late neu-
rodegenerative diseases, as shown for 
other viral infections [18]. Viruses such 
as Zika virus (ZIKV), cytomegalovirus, 
and rubella are able to cross the pla-
cental barrier and/or BBB and reach the 
CNS [37]. In ZIKV infection, along with 
damage to progenitor cells, an increase 
in neuroinflammation is observed, which 
disrupts the physiological role of microg-
lia during brain development [69]. The 
same is true for other RNA viruses, such 
as cytomegalovirus [2]. It is possible that 
these data suggest that the inflammation 
caused by a viral infection will be more 
detrimental to the development of the 
nervous system than the direct cytopath-
ic effect of the virus on neurons.

At the end of the gestational and early 
early postnatal periods, the homeostat-
ic function of microglia plays an active 
physiological role in synaptic pruning 
and neural network formation [35], being 
highly reactive to its microenvironment. 
Abnormal microglial responses during 
synaptic remodeling during critical peri-
ods of development can lead to the emer-
gence of inadequate neural networks that 
increase the risk of developing neurolog-
ical and psychiatric disorders [46]. Thus, 
prenatal or perinatal infections can lead 
to impaired physiological functions of mi-
croglia, which is an important risk factor 
for the late onset of diseases such as 
schizophrenia, autism spectrum disorder 
(ASD), and attention deficit/hyperactivity 
disorder (ADHD) [18].

Viral infections affecting the brain in-

duce the phagocytic activity of microg-
lia, which is involved in the elimination 
of pathogens and cellular debris [14]. 
Microglia can also promote neurogene-
sis and induce neurotoxicity through the 
release of oxidants, which in turn can 
activate inflammation [40]. A triggering 
receptor expressed on myeloid cells 2 
appears to be required for microglia-me-
diated synaptic pruning during brain 
development [63]. In a mouse model of 
coronavirus infection, it was shown that 
the microglia-associated triggering re-
ceptor expressed on myeloid cells 2 and 
DAP12 (12 kDa DNA activating protein) 
were among the most highly expressed 
genes [8]. Taken together, these studies 
suggest that microglial function is modu-
lated by viral infections during develop-
ment and may be associated with long-
term complications in children infected 
with COVID-19.

The formation of microglia can also be 
influenced by T-lymphocytes involved in 
its various functions at the early stages 
of development [36]. Indeed, the pop-
ulation of T cells that act as “catchers” 
in the CNS, localized both in the brain 
parenchyma and in the choroid plexus 
and meninges, are associated with the 
maintenance of functional neuroplastici-
ty in a healthy brain. These T cells can 
also stimulate peripheral immune cells 
through a complex signaling pathway 
with the choroid plexus, releasing IFN-Ƴ 
[27], and promoting plasticity through the 
release of IL-4 [51]. However, the “cy-
tokine storm” mechanism in the patho-
genesis of SARS-CoV-2 infection can 
disrupt the normal cytokine-mediated 

cross-pooling in the choroid plexus, when 
IFN-Ƴ, together with IL-6, is one of the 
main active molecules of the pro-inflam-
matory profile. Also, a group of scientists 
found high levels of IL-6 and INF-Ƴ in the 
CNS of K18-hACE2 transgenic mice in-
fected with SARS-CoV [58].

Relationship between maternal al-
cohol use during pregnancy and neu-
roinflammation in COVID-19. Fetal al-
cohol spectrum disorders include several 
pathologies and side effects associated 
with alcohol use by pregnant women [11]. 
Some of the neurocognitive impairments 
seen in alcohol spectrum disorders in-
clude: memory or visuospatial decline, 
low behavioral self-control, rapid mood 
changes, impulsive behavior, loss of 
adaptive functions such as speech and 
communication, poor social interaction, 
and movement disorders [ 68]. Alcohol 
can interfere with the development of 
the fetal nervous system through chang-
es in a number of events such as neu-
rogenesis, gliogenesis, myelination, and 
impaired development of functional neu-
ral networks [34]. Thus, the teratogenic 
effects of ethanol during pregnancy are 
considered as a risk factor for the de-
velopment of brain anomalies [25], and 
there is a strong correlation between al-
cohol use during pregnancy and ADHD 
and ASD [45, 44].

Ethanol-induced brain malformations 
are often associated with microglial acti-
vation via toll-like type 4 receptor (TLR4) 
[65] and release of pro-inflammatory cy-
tokines and chemokines [29]. TLR4 ac-
tivation can induce inflammation through 
a MyD88-dependent signaling pathway 

Infectious and noninfectious factors alter the microglial function and contribute to developmental 
brain disorders. SARS-CoV-2 - severe acute respiratory syndrome coronavirus 2; FASDs- fetal 
alcohol spectrum disorder; HEB - hematoencephalic barrier; PUFAs - polyunsaturated fatty 
acids; ACE2 - angiotensin-converting enzyme 2; IL-6 - interleukin 6; IFNY - interferon gamma; 
TNFa - tumor necrosis factor alpha; IL1ß - interleukin 1 beta.
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that interacts with nuclear factor kappa-bi 
(NF-kB) [17]. In addition, maternal alco-
hol consumption during pregnancy con-
tributes to the development of newborn 
infections [32], reducing the immune re-
sponse to the fight against viral and bac-
terial infections [7] with impaired adaptive 
immunity and altered B-cell responses, 
leading to an increase in the severity of 
viral infections [23 ]. It has recently been 
reported that SARS-CoV-2 also interacts 
with TLR receptors that induce pro-in-
flammatory cytokines [55]. Thus, SARS 
in COVID-19 and alcohol use during 
pregnancy may interact in converging 
inflammatory pathways. A generalized 
scheme of the impact of risk factors on 
the brain of a child when a mother be-
comes infected with COVID-19 is shown 
in Figure.

Clinical presentation in children 
with MIS-C temporally associated with 
SARS-CoV-2. In a retrospective study, 
which took place in the UK at the Great 
Ormond Street Hospital [48], scientists 
selected 58 case histories of children 
(mean age, 9 years [interquartile inter-
val {IQR}, 5.7-14]; 33 girls [ 57%]) that 
met MIS-C criteria. PCR tests for SARS-
CoV-2 were positive in 15 of 58 patients 
(26%), and IgG test results were positive 
in 40 of 46 (87%). A total of 45 of 58 pa-
tients (78%) had evidence of current or 
previous SARS-CoV-2 infection. All chil-
dren had fever and nonspecific symp-
toms, including vomiting (26/58 [45%]), 
abdominal pain (31/58 [53%]), and diar-
rhea (30/58 [52%]). Rash was present in 
30 of 58 (52%) cases and conjunctival 
injection was present in 26 of 58 (45%) 
cases. Laboratory evaluation indicated a 
marked inflammatory response, such as 
C-reactive protein (229 mg/L [IQR, 156-
338] estimated in 58 of 58) and ferritin 
(610 µg/L [IQR, 359-1280] estimated in 
53 out of 58). Of the 58 children, 29 de-
veloped shock (with biochemical signs 
of myocardial dysfunction) and required 
inotropic support and hospitalization in 
the intensive care unit. Of those admit-
ted to the ICU, 23 of 29 [79%] received 
mechanical ventilation. Eight patients 
(14%) developed dilatation or aneurysm 
of the coronary arteries. Comparison of 
PIMS-TS with Kawasaki syndrome and 
toxic shock syndrome showed differenc-
es in clinical and laboratory character-
istics, including older age (mean age, 9 
years [IQR, 5.7–14] vs. 2.7 years [IQR, 
1.4– 4.7] and 3.8 years [IQR, 0.2-18] re-
spectively) and greater elevations in in-
flammatory markers such as C-reactive 
protein (median, 229 mg/L [IQR 156-338] 
vs 67 mg/L [IQR, 40-150 mg/L] and 193 
mg/L [IQR, 83-237], respectively).

Conclusion. Since the onset of the 
COVID-19 outbreak, children have re-
mained less susceptible to infection in 
most cases with subclinical manifesta-
tions and a mild course. Despite reports 
of MIS-C syndrome, parents and pediatri-
cians are not fully aware of the possible 
long-term effects of inflammation on brain 
development and possible interactions 
between viral infections and non-infec-
tious conditions such as nutritional im-
balances of FAs and PUFAs and alcohol 
consumption during pregnancy. Transient 
thyroiditis caused by SARS-CoV-2 has 
also been reported, which can lead to au-
toimmune hypothyroidism. In the present 
review, we hypothesize that these condi-
tions may interact to cause an increase in 
neuroinflammation, which may alter the 
physiological role of microglia by influ-
encing the mechanisms of synaptic prun-
ing and neural circuit formation that occur 
from 2 years of age through adolescence. 
Thus, it should be noted that autoimmune 
hypothyroidism, malnutrition, and mater-
nal alcohol consumption during preg-
nancy may be considered risk factors in 
children infected with COVID-19, who 
may be more susceptible to neurode-
velopmental disorders such as schizo-
phrenia, autism, ADHD and cognitive 
impairment. Therefore, attention should 
be paid to possible interactions between 
risk factors that can lead to long-term 
brain developmental abnormalities and 
occur in the next few years. Therefore, 
careful monitoring of children exposed 
to SARS-CoV-2 or born to infected moth-
ers is strongly recommended, and future 
studies that could identify additional risk 
factors are highly recommended.
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Introduction. According to the World 
Health Organization (WHO), the June 
2022 World Mental Health Report noted 
that 1 billion people in the world suffer 
from mental disorders, including 15% 
of working age. During the coronavirus 
pandemic, the prevalence of depression 
increased by 25%. Depression remains a 
major problem in the modern world. De-
spite research on depressive disorders 
and their treatment with antidepressants, 
about 80% of inpatients with depression 
and 70% of outpatients complain of sleep 
disturbances. Currently, there are several 
available hypotheses for the occurrence 
of depressive disorders. Among them are 
neurotransmitter dysfunction hypotheses 
and chronobiological concepts, i.e. al-
tered circadian rhythms mediated by mel-
atonin. Melatonin is a universal biological 
regulator of vital rhythms for all living or-
ganisms, as evidenced by its secretion in 
all animals, starting with unicellular [1,2].

The history of the discovery of mela-
tonin (MT) is associated with the name 

of Aaron Lerner, a professor of derma-
tology at Yale University, who studied 
the nature of vitiligo. Having reviewed 
the publication of C. McCord and F. Al-
len (1917), who found that the use of an 
extract of the pineal glands of cows led 
to a lightening of the cover of tadpoles by 
compressing the dark epidermal melano-
phores. Professor A. Lerner came to the 
conclusion that a substance responsible 
for pigmentation and destruction of pig-
ments is formed in the pineal gland, and 
thought that this substance would help in 
the treatment of skin diseases. In the ear-
ly 1950s a group of scientists led by Lern-
er succeeded in isolating an extract from 
cow pineal glands that brightens the skin 
of frogs. The experiment was delayed, 
so it was decided to complete work on 
it, but shortly before the end of the term, 
scientists managed to isolate and deter-
mine the structure of the main substance 
- it turned out to be N-acetyl-5-methoxy-
tryptamine, which was named melatonin. 
The resulting discovery was described 
by Lerner in an article published in 1958 
in the Journal of the American Chemical 
Society [17].

Melatonin performs important anti-
oxidant and chronobiotic functions for 
the body, but also affects carbohydrate 
metabolism, secretion of insulin, leptin, 
adiponectin, adipocyte proliferation, and 

eating behavior. The mechanism of ac-
tion of melatonin lies in its amphiphilicity, 
which allows it to penetrate through cell 
and nuclear membranes and directly in-
teract with intracellular organelles. The 
antioxidant function of MT can be distin-
guished, and it consists in the inhibition 
of the formation of hydroxyl radicals, the 
protection of lipids, proteins and DNA, 
and cellular apoptosis. Melatonin also 
has the ability to limit oxidative stress 
and regulate energy metabolism. Includ-
ing body weight, insulin sensitivity and 
glucose tolerance. The effects of MT 
are realized at the stages of energy con-
sumption (nutrition), redistribution of en-
ergy reserves and energy consumption. 
Synchronization of human eating behav-
ior with metabolic processes also occurs 
with the participation of melatonin.

It has been found that melatonin is syn-
thesized in the human body in the cells of 
the bone marrow, intestines, on the skin 
and in the retina of the eye. According to 
the first assumptions, melatonin was con-
sidered a hormone involved in the regu-
lation of circadian rhythm mechanisms in 
living beings, but later it was found that, in 
addition to this hormonal function, MT is 
involved in the regulation of seasonal and 
lunar cycles in animals and humans. The 
level of melatonin in human blood fluctu-
ates during the day: during daylight hours 
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A.A. Grigoryeva, E.D. Okhlopkova
THE ROLE OF MELATONIN IN DISORDERS 
OF THE PSYCHO-EMOTIONAL SPHERE

An analysis of the works of domestic and foreign literature devoted to the study of the effect of melatonin on the psycho-emotional state of 
the organism was carried out. According to most researchers, the trend towards an increase in the prevalence of depressive disorders continues. 
Currently, there is a search for new approaches in the treatment of depression. The relationship between melatonin and the occurrence of 
depressive disorders requires further study.
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