А.В. Марусин, Н.Р. Максимова, Н.П. Матвеева, М.Г.Спиридонова, В.А. Степанов

АССОЦИАЦИЯ ПОЛИМОРФИЗМА ГЕНОВ ПЕРЕНОСЧИКА ДОФАМИНА DAT1 (SLC6A3) И ЭТАНОЛМЕТАБОЛИЗИРУЮЩИХ ФЕРМЕНТОВ ADH1B И CYP2E1
С РИСКОМ ФОРМИРОВАНИЯ АЛКОГОЛЬНОЙ
ЗАВИСИМОСТИ В ЯКУТСКОЙ ПОПУЛЯЦИИ

УДК 575.174.015.03:22+575.162:17

Изучено распределение частот аллелей и генотипов полиморфизма двух генов этанол-метаболизирующих ферментов *ADH1B*Arg47His* и *CYP2E1 Pst I (G/C)*, а также полиморфизм длин тандемных повторов (*VNTR*) в 3'-некодирующей области (3'-UTR) и 1342 A/G в 9 экзоне гена переносчика дофамина *DAT1* (*SLC6A3*) в выборках из трёх якутских популяций в сравнении с группой больных алкоголизмом якутов. Три выборки якутских популяций составили общую группу популяционного контроля, в которой, как и в группе больных, по всем четырём изученным локусам выполнялось равновесие Харди-Вайнберга. У якутов не выявлено связи полиморфизма этанол-метаболизирующих ферментов с подверженностью к алкоголизму. Обнаружена близкая к статистически значимой ассоциация полиморфизма A/G (p = 0,055) и статистически значимая ассоциация *VNTR* в 3'-UTR гена *DAT1* (p = 0,015) с алкоголизмом в якутской популяции. При этом в группе больных между этими локусами наблюдается умеренное неравновесие по сцеплению, которое отсутствует в контрольной группе. Выявлены гаплотипы: предрасполагающий к формированию алкоголизма «X_G» (p = 0,013) и протективный для болезни «X_A» (p = 0,043), где (X) – любой аллель не 10 копиями повтора (7, 9, или 11 повторов).

Ключевые слова: этанол-метаболизирующие ферменты, переносчик дофамина, генетический полиморфизм, алкоголизм

The allele and genotype distribution of two alcohol metabolizing enzymes $ADH1B^*Arg47His$ and CYP2E1 $Pst\ I\ (G/C)$ as well as the exon 9 1342 A/G and variable number of tandem repeats (VNTR) polymorpHisms in the 3 '-untranslated region (3'-UTR) of the dopamine transporter $DAT1\ (SLC6A3)$ gene were investigated in three Yakut populations in comparison with Yakut alcoholics men. The three Yakut populations were combined in total population control group. Genotype frequencies of all four examined loci obeyed the Hardy-Weinberg equilibrium both in control and in patient groups. No associations in allele frequencies of two alcohol metabolizing enzymes with alcoholism in Yakuts were revealed. Almost significant association (p = 0,055) of A/G and significant association of VNTR (p = 0,015) polymorphisms in DAT1 gene with alcoholism in Yakut population were found. In the same time, moderate LD between these two loci was observed in patients, but not in the control group. The haplotypes contributing to alcoholism susceptibility ("X_G"; p = 0,013) and protective with the respect to the disease ("X_A"; p = 0,043) were revealed, where X denotes any allele except those with 10 repeat copies.

Keywords: alcohol metabolizing enzymes, dopamin transporter, gene polymorphism, alcoholism.

Введение

Алкоголизм – широко распространённое, хроническое и рецидивирующее заболевание. В 2005 г. уровень первичной заболеваемости алкоголизмом (включая алкогольные психозы) составил в Якутии 303,6 на 100 тыс. населения. тогда как по России в целом этот показатель - 147 больных на 100 тыс. [4]. Семейные, близнецовые и исследования случаев усыновления указывают, что восприимчивость к алкогольной зависимости, вероятно в большой мере, вызывается генетическими факторами, которые составляют 50-60 % риска подверженности [16]. Вообще биологические потомки алкоголиков в три – пять раз с большей вероятностью склонны к зависимости от алкоголя, чем потомки неалкоголиков

ГУ НИИ медицинской генетики СО РАМН: МАРУСИН Андрей Викторович - к.б.н., н.с. e-mail: andrey.marusin@medgenetics. ru; СПИРИДОНОВА Мария Геннадьевна - к.б.н., н.с., maria.spiridonova@medgenetics. ru; СТЕПАНОВ Вадим Анатольевич - д.б.н., зам. дир. по науке, vadim.stepanov@medgenetics.ru; МАКСИМОВА Надежда Романовна - к.м.н., гл. н.с. ЯНЦ КМП СО РАМН, nogan@yandex.ru; МАТВЕЕВА Нюргуяна Петровна - с.н.с. ЯНЦ КМП СО РАМН.

[7]. Более того, одно из масштабных близнецовых исследований алкоголизма (около 9000 близнецовых пар мужского пола) установило, что генетические факторы риска составляют 54 % подверженности к злоупотреблению алкоголем [15]. Поэтому актуальным является анализ связи генетической изменчивости с риском заболевания алкоголизмом у коренных малочисленных народов Севера, и у якутов в частности.

Цель настоящего исследования – анализ ассоциаций полиморфизма длин тандемных повторов (*VNTR*) в 3'-некодирующей области (3'-UTR) и 1342 A/G в 9 экзоне гена переносчика дофамина *DAT1* (*SLC6A3*) и этанол-метаболизирующих ферментов *ADH1B*Arg47His* и *CYP2E1 Pst I* (*G/C*) с риском формирования алкогольной зависимости в якутской популяции. Подробно эти полиморфизмы описаны в работах [2,5] для изученной ранее русской популяции из г. Томска.

Материалы и методы

Объект исследования. Контрольную группу составили случайные выборки из трёх популяций Якутии: пос. Бяди (n = 156), пос. Дюпся (n = 113) и пос. Чериктей (n = 127), а группу больных с диагнозом алкоголизм - 102 мужчины из двух центральных улусов

Республики Саха (Якутия). Все группы однородны по этническому составу и представлены якутами. Материал исследования — ДНК, выделенная из периферической крови стандартным методом фенол-хлороформной экстракции.

Генотипирование полиморфизма *ADH1B*, *CYP2E1*, *DAT1*. Генотипирование трёх однонуклеотидных полиморфизмов — *ADH1B*Arg47His*, *CYP2E1*G/C* и *DAT1*A/G* (NCBI Assasy ID rs1229984, rs3813867 и rs6347, соответственно) — проводили методами ПЦР и анализа ПДРФ, как описано ранее [6, 13, 14]. Полиморфизм *VNTR* в 3'-UTR *DAT1* тестировали по [17].

Статистические методы. Оценку соответствия распределения генотипов равновесию Харди-Вайнберга (РХВ), наблюдаемые и ожидаемые гетерозиготности, сравнение частот аллелей для однонуклеотидных полиморфизмов проводили общепринятыми методами популяционной биометрии [3]. Для полиморфизма VNTR в 3'-UTR DAT1 оценку соответствия распределения генотипов равновесию Харди-Вайнберга для множественных аллелей проводили с помощью точного теста по S. Guo и E. Thomson [11]. Для VNTR DAT1, чтобы устранить «шум», привносимый присутствием редких генотипов и/или аллелей, была осуществлена редукция данных. Любой аллель с числом копий больше, либо меньше 10 рассматривался как один, менее распространённый аллель (Х). Встречались аллели с 7, 9 и 11 копиями повтора. Оценку частот гаплотипов по ЕМ-алгоритму (максимизации математического ожидания) и меры неравновесия по сцеплению по Левонтину (D') проводили в программе Haploview 3.2 (2005). Остальные расчёты проводили в программах «STATistica 5.5», «Excel» и «RxC». Принят уровень статистической значимости 5 %.

Результаты и обсуждение

По полиморфизму ADH1B*Arg47His был изучен пос. Бяди (n=53), а также выборка больных алкоголизмом (n=102). В обеих группах выполнялось равновесие Харди-Вайнберга, частоты мутантного аллеля ADH1B*47 His cocтавили 12,3 % в группе больных и 9,4 % в выборке из пос. Бяди. Статистически значимого отличия частот аллелей не выявлено ($X^2 = 0.58$; p = 0.448). Ранее установлено, что аллель ADH1B*47 His обладает протекторным действием к алкоголизму у китайцев и японцев [13]. Возможно, это объясняется повышенной активностью фермента с *His* (гистидином) в 47 положении аминокислотной последовательности белка, накоплением ацетальдегида и его метаболитов, что вызывает отвращение к алкоголю. Однако данные для других популяций Восточной Азии и европеоидов противоречивы [8-10]. Вероятно, увеличение объёмов тестируемых выборок, позволит выявить связь генетической изменчивости ADH1B*Ara47His с алкоголизмом в якутской популяции.

В трёх выборках популяционного контроля - посёлки Бяди, Дюпся, Чериктей и в группе больных алкоголизмом по полиморфным вариантам CYP2E1*G/C, VNTR DAT1 n DAT1*A/ G выполняется РХВ, за исключением полиморфизма DAT1*A/G в пос. Чериктей, вследствие недостатка гетерозигот. Наблюдаемая и ожидаемая гетерозиготности составили 10,2 и 16,7% соответственно. Возможно, это следствие низкой частоты аллеля DAT1*G и небольшого объёма выборки (n = 49). Выявлены близкие к статистически значимым различия частот аллелей по полиморфизму DAT1*A/G между посёлками Дюпся - Чериктей $(X^2 = 3.46; p = 0.063)$ и Бяди — Дюпся по полиморфизму CYP2E1*G/C ($X^2 =$ 3,28; р = 0,070), а также статистически значимое различие по полиморфизму VNTR DAT1 в частотах аллелей с 10 и с X (т.е. 7, 9 или 11) повторов между

Таблица 1

Частоты и численности мутантных аллелей, генотипов и показатели генетической изменчивости полиморфизма CYP2E1*G/C, VNTR DAT1 и DAT1*A/G в группах больных и контроля

Ген/аллель	Груп- па	Аллель (%)	Генотипы (%)		Hobs	Нехр	n	χ^2	р	
			11	12	22					
CYP2E1*C (*+Pst I)	Α	14 (8,3)	70 (83,3)	14 (16,7)	0 (0)	16,6	15,3	84	0,69	0,405
	ОК	36 (12,0)	117 (78,0)	30 (20,0)	3 (2,0)	20,0	21,1	150	0,42	0,516
DAT1*G (-Dde I)	A	35 (19,0)	60 (65,2)	29 (31,5)	3 (3,3)	31,5	30,8	92	0,05	0,824
	ОК	30 (12,3)	94 (77,1)	26 (21,3)	2 (1,6)	21,3	21,6	122	0,02	0,896
VNTR DAT1*X	Α	29 (14,1)	78 (75,7)	21 (20,4)	4 (3,9)	20,4	24,2	103	2,54	0,111
	ОК	67 (8,5)	331 (83,6)	63 (15,9)	2 (0,5)	15,9	15,5	396	0,29	0,590

Примечание. А – больные алкоголизмом, ОК – общий контроль из трёх популяционных выборок, Hobs и Нехр значения наблюдаемой и ожидаемой гетерозиготности в %, n объём выборки, χ^2 и р значения критерия и достигнутый уровень значимости соответствия наблюдаемого распределения генотипов ожидаемому при равновесии Харди-Вайнберга, для полиморфизма VNTR DAT1 сравнивали аллель с 10 копиями повтора против остальных (X - 7, 9 или 11 копий повтора).

пос. Бяди и пос. Дюпся ($X^2 = 4,35$; р = 0,037). Несмотря на вышеизложенные факты, данные о полиморфизмах CYP2E1*G/C, VNTR DAT1 и DAT1*A/G для трёх посёлков были объединены и составили общую группу популяционного контроля. Так как, вероятно, обнаруженные отличия являются следствием стохастических и/или выборочных причин, а не отражают истинные генетические процессы, приводящие к изменчивости частот аллелей и генотипов в трёх популяциях Усть-Алданского улуса Республики Саха (Якутия). В дальнейшем анализе сравнивались частоты аллелей объединённого контроля (ОК) с группой якутов, больных апкогопизмом.

Данные о частотах, численностях аллелей и генотипов полиморфизма CYP2E1 и DAT1, наблюдаемой и ожидаемой гетерозиготности, соответствия РХВ в контрольной группе и у больных представлены в табл.1. В обеих группах по всем трём полиморфизмам выполняется РХВ. Так же как и в русской популяции из г. Томска [5], у якутов не выявлено статистически значимого отличия частот аллелей полиморфизма CYP2E1*G/C между группами больных и объединённого контроля ($X^2 = 0.62$; p = 0.429). Ассоциация аллеля СҮР2Е1*С с алкогольной болезнью печени выявлена, в популяции Республики Башкортостан [1].

Обнаружена близкая к статистически значимой повышенная частота (на 6,7 %) аллеля DAT1*G в 9 экзоне гена $(X^2 = 3,68; p = 0,055)$ и статистически значимо повышенная частота аллеля не с 10 копиями повтора (X) полиморфизма VNTR DAT1 ($X^2 = 5.93$; p = 0,015) в группе больных алкоголизмом якутов (табл. 1). В изученной ранее русской популяции не было выявлено связи полиморфизма 1342 A/G в 9 экзоне гена DAT1 с алкоголизмом, а для полиморфизма VNTR DAT1 ассоциация показана на уровне генотипов (р = 0,042) и только близка к статистически значимой на уровне частот аллелей (р = 0.055) [2].

Оценки нормализованной меры неравновесия по сцеплению (D') между полиморфизмами в гене DAT1 составили 0,72 у больных (95 % доверительный интервал (95 % СІ) 0,48-0,87; LOD-балл (натуральный логарифм отношения шансов за сцепление) равен 5,28) и 0,08 в контроле (95 % СІ 0-0,29; LOD = 0,14). Таким образом, в выборке якутов больных алкоголизмом отмечено умеренное, статистически значимое сцепление, тогда как в объединённой выборке из трёх якутских популяций сцепление этих локусов отсутствует. Возможно, это является следствием большей генетической гетерогенности популяционных выборок.

В табл.2 представлены частоты гаплотипов и достигнутые уровни значимости различий между группами мужчин, страдающих алкоголизмом, и

Таблица 2

Ассоциация полиморфизма VNTR в 3'-UTR и 1342 A/G в 9 экзоне гена DAT1 с риском формирования алкоголизма у якутов на уровне гаплотипов

Гапло- типы	A	ОК	χ^2	p
10 A	77,8	79,8	0,25	0,617
X_A	3,2	7,8	4,12	0,043
10 G	11,3	9,8	0,24	0,627
X_G	7,7	2,5	6,13	0,013
n	92	121		

Примечание. В таблице приведены частоты гаплотипов (в %) у больных алкоголизмом (А) и в общей контрольной группе (ОК), значения критерия χ^2 и достигнутый уровень значимости (р) рассчитанные путём сравнения долей гаплотипов в группах, Х любой аллель VNTR DAT1 не с 10 копиями повтора (7, 9 или 11 повторов).

контролем. Как видно из табл.2, у якутов, больных алкоголизмом, статистически значимо понижена частота гаплотипа «X_A» на 4,5 % (протективное действие) и повышена частота гаплотипа «X G» на 5,2 % (предрасполагающее к болезни влияние). В изученной ранее популяции русских г. Томска, в противоположность якутской популяции, выявлено близко к статистически значимому (р = 0,058) предрасполагающее к алкоголизму действие гаплотипа «X А» (у больных частота повышена на 6 %) и отсутствие влияния гаплотипа «X G» на подверженность к болезни. При этом эти локусы были умеренно, но статистически значимо сцеплены у больных и в контроле (D' = 0.40; LOD = 2.82 µ D' = 0.60; LOD =

Заключение

В настоящем исследовании изучено распределение частот аллелей и генотипов полиморфизмов двух генов этанол-метаболизирующих ферментов ADH1B*Arg47His и CYP2E1 Pst I (G/C), полиморфизм длин тандемных повторов (VNTR) в 3'-некодирующей области (3'-UTR) и 1342 A/G в 9 экзоне гена переносчика дофамина DAT1 (SLC6A3) в выборках из трёх якутских популяций в сравнении с группой больных алкоголизмом якутов. Три выборки якутских популяций составили общую группу популяционного контроля, в которой, как и в группе больных, по всем четырём изученным локусам выполнялось равновесие Харди-Вайнберга. У якутов не выявлено связи полиморфизма этанол-метаболизирующих ферментов с подверженностью к алкоголизму. Обнаружена близкая к статистически значимой ассоциация полиморфизма A/G (p = 0,055) и статистически значимая ассоциация VNTR в 3'-UTR гена DAT1 (p = 0,015) с алкоголизмом в якутской популяции. При этом в группе больных между этими локусами наблюдается умеренное неравновесие по сцеплению, которое отсутствует в контрольной группе. Выявлены гаплотипы: предрасполагающий к формированию алкоголизма «Х G» (р = 0,013) и протективный для болезни «X_A» (р = 0,043), где (X) – любой аллель не 10 копиями повтора (7, 9, или 11 повторов).

Настоящая работа выполнена при поддержке грантов РФФИ: 07-04-01629-а, 09-04-99083-р_офи.

Литература

- 1. Анализ полиморфизма генов, участвующих в метаболизме этанола у лиц с алкогольной болезнью печени / 3.А. Шангареева [и др.] // Медицинская генетика. 2003. Т. 2, № 11. С. 485-490.
- 2. Ассоциация полиморфизма 1342 A/G в экзоне 9 и длин тандемных повторов (VNTR) в 3'-некодирующей области (3'-UTR) гена переносчика дофамина DAT1 (SLC6A3) с риском формирования алкогольной зависимости в Западно-Сибирской популяции русских / А.В. Марусин [и др.] // Медицинская генетика. 2008. № 6. С. 31-35.
- 3. Животовский Л.А. Популяционная биометрия / Л.А. Животовский. М.: Наука, 1991. 271 с.
- 4. Киржанова В.В. Наркологические расстройства в России / В.В. Киржанова // Демоскоп Weekly (электронная версия бюллетеня «Население и общество». 2007. № 275-276 [URL=http://demoscope.ru/weekly/2007/0275/tema02.php].
- 5. Полиморфизм генов этанол-метаболизирующих ферментов *ADH1B*, ADH7 и *CYP2E1* и риск развития алкоголизма в русской популяции За-

падно-Сибирского региона / А.В. Марусин [и др.] // Мед. генетика. – 2006. – Т. 5, № 7 (49). – С. 51-56.

6. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity / M.V. Osier [et al.] // Am. J. Hum. Genet. - 2002. - V. 71, № 1. - P. 84-99.
7. Cotton N.S. The familial incidence of alcoholism:

7. Cotton N.S. The familial incidence of alcoholism: A review / N.S. Cotton // J. Stud. Alcohol. – 1979. – N 40. – P. 89–116.

- Genetic and environmental influences on alcohol metabolism in humans / T.-K. Li [et al.] // Alchol. Clin. Exp. Res. – 2001. –V. 25, N 1. – P. 136-144
- 9. Genetic polymorp*His*ms of ADH2, ADH3, CYP4502E1 Dra-I and Pst-I, and ALDH2 in Spanish men: lack of association with alcoholism and alcoholic liver disease / [et al.] Vidal F. // J. Hepatol. 2004. V. 41, N 5. P. 744-750.
- 10. Genetic time-series analysis identifies a major QTL for in vivo alcohol metabolism not predicted by in vitro studies of structural protein polymorp *Hism* at the *ADH1B* or ADH1C loci / A.J. Birley [et al.] // Behav. Genet. 2005. V. 35. N 5. P. 509-524.
- 11. Guo S. Performing the exact test of Hardy-Weinberg proportion for multiple alleles / S. Guo, E. Tomson // Biometrics. 1992. Vol. 48. P. 361-372.
- 12. Haplotype study of three polymorp*His*ms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder / C.L. Barr [et al.] // Biol. Psychiatry. 2001. V. 49, N 4. P. 333-339.
- 13. Lee Sh.-L. Functionality of allelic variation in human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism / Sh.-L. Lee, J.-O. Höö, Sh.-J. Yin // Pharmacogenetics. 2004. V. 14, №11. P. 725-732
- 14. Susceptibility to esophageal cancer and genetic polymorp *His*ms in glutathione S-transferases T1, P1 and M1 and cytochrome P450 2E1 / D.-X. Lin [et al.] // Cancer Epidemiol. Biomarkers Prev. − 1998. − V. 7. № 11. − P. 1013-1018.
- 15. Temperance board registration for alcohol abuse in a national sample of Swedish male twins, born 1902 to 1949 / K.S. Kendler [et al.] // Arch. Gen. Psychiatry. 1997. V. 54, N 2. P. 178–184.
- 16. Unraveling the molecular mechanisms of alcohol dependence / G. Kalsi [et al.] // Trends Genet. 2009. N 1. P. 49-55.
- 17. URL: http://info.med.yale.edu/genetics/kkidd/ SLC6A3 3VNTR.html

А.А. Семенова, Е.Я. Яковлева, А.Н. Ноговицына

ЖЕНСКОЕ БЕСПЛОДИЕ: ЧАСТОТА, ЭТИОЛОГИЯ, ДИАГНОСТИКА ПО ДАННЫМ КОНСУЛЬТАЦИИ ПО РЕПРОДУКЦИИ ЧЕЛОВЕКА ПЕРИНАТАЛЬНОГО ЦЕНТРА РЕСПУБЛИКАНСКОЙ БОЛЬНИЦЫ №1 – НАЦИОНАЛЬНОГО ЦЕНТРА МЕДИЦИНЫ

УДК 618.177

Цель исследования. Изучение структуры, факторов риска и причин женского бесплодия.

Материалы и методы. Проведен ретроспективный анализ 500 амбулаторных карт женщин с бесплодием.

Результаты исследования. В структуре причин первичного бесплодия преобладает трубно-перитонеальное бесплодие (45,7%), эндокринное (23,9%) и генитальный эндометриоз (29,9%); вторичного - эти причины составляют 54,3, 19 и 8,9% соответственно. Основными этиологическими факторами женского бесплодия являются хронические воспалительные заболевания гениталий, эндометриоз, нарушение менструальной функции.

Ключевые слова: женское бесплодие, факторы риска, генетические исследования.

СЕМЕНОВА Айталина Афанасьевна – врач акушер-гинеколог КРЧ ПЦ РБ№1-НЦМ, e-mail: 4aita@mail.ru; ЯКОВЛЕВА Елизавета Яновна – зав. Консультацией по репродукции человека ПЦ РБ№1-НЦМ; НОГОВИЦЫНА Анна Николаевна – к.м.н., врач-генетик МГК ПЦ РБ№1-НЦМ, зав. лаб. ЯНЦ КМП СО РАМН, e-mail: nogovan@ yandex.ru.

Materials and methods. The retrospective analysis of 500 out-patient cards of women with sterility is lead.

Results of research. In structure of the reasons of primary sterility tubal-peritoneal sterility (45, 7%), endocrine (23, 9%) and genital endometriosis (29, 9%) prevail; at secondary - these reasons make 54, 3%, 19 and 8, 9% accordingly. The basic etiologic factors of female sterility are chronic inflammatory diseases of genitals, endometriosis and menstrual function disorder.

Keywords: female sterility, risk factors, genetic researches.