

Заключение

Таким образом, мутации, характерные для народов Восточной Европы, не выявлены у больных якутского этнического происхождения. Необходимо проведение дальнейшего поиска мутаций, специфичных для якутов, с целью разработки подходов ДНК- диагностики и профилактики рака молочной железы в Республике Саха.

Работа проводилась при поддержке гранта РГНФ 08-06-00033а.

Литература

- 1. Бермишева М.А. Частота выявления мутации 5382insC гена BRCA1 / М.А. Бермишева, Г.Ф. Зиннатуллина, Э.К. Хуснутдинова // Вопросы онкологии. - 2008. - Т. 54, №1. - С. 31-34.
- 2. Карпухин А.В. Наследственная предрасположенность к раку молочной железы / А.В. Карпухин [и др.] // Медицинская генетика. - 2002. - Т.6, №6. - C.254-259.
- 3. Мандельштам М.Ю. Молекулярно-генетический анализ моногенных форм атеросклероза и рака молочной железы у жителей Санкт – Петербурга: автореф. дисс. д-ра биол. наук / М.Ю. Мандельштам. - СПб. - 2005.
- 4. Николаева Т.И. Рак молочной железы в условиях крайнего севера. Анализ эффективности онкологической помощи: автореф. дисс. канд. мед. наук / Т.И. Николаева. - Томск, 2007.

- 5. Федорова С.А. Этногеномика коренных народов республики Саха (Якутия): автореф. дисс. д-ра биол. наук / Федорова С.А. - М., 2008.
- 6. Ann S., Lee G. CHEK2*1100delC Screening of Asian Women With a Family History of Breast Cancer Is Unwarranted / S. Ann, G. Lee // Supported by the Sing Health Cluster Research Grant. - 2001 P. 313-318
- 7. Nijmegen Breakage Sjndrome mutations and risk of breast cancer / Bogdanova N. [et al.] // Int. J. Cancer, 2008. P. 802-806.
- 8. Buslov K. NBS1 657del5 mutation may contribute only to a limited fraction of breast cancer cases in Russia / K. Buslov, A. Iyevleva, E. Chekmariova // Int. J. Cancer, 2004. P. 585-589
- 9. Chen W. Breast Cancer Low-Penetrance Allele 1100delC in the CHEK2 Gene: Not Present in the Chinese Familial Breast Cancer Population / W. Chen, S. Yurong, N. Liansheng //Journal of Clinical Oncology, Vol 26. - 2008: P. 419-422.
- 10. A novel founder CHEK2 mutation is associated with increased pro STATe cancer risk / Cybulski C. [et al.] // Cancer Res, 2004. P. 677-679.
- 11. Digweed M. Nijmegen breakage syndrome: clinical manife STATion of defective response to DNA doublestrand breaks / M. Digweed, K. Sperling // DNA Repair, 2004. P.1207-1214.
- 12. The CHEK2 1100delC mutation is not present in Korean patients with breast cancer cases tested for BRCA1 and BRCA2 mutation / H. Doo [et al.] // Breast Cancer Res Treat, 2008. P. 569-573
- 13. Gatti R. Ataxia-telangiectasia. In: Vogelstein B, Kinzler KW (eds) The genetic basis of human cancer / R. Gatti // McGraw-Hill, New York, 2002. P. - 239–266.
- 14. Grzybowska E. High frequency of recurrent mutations in the BRCA1 and BRCA2 in Polish families

- with breast and ovarian cancer / Grzybowska E. [et al.] // Hum. Mutat, 2000. V.16. P. 482-490.
- 15. Khoo U. Recurrent BRCA1 and BRCA2 germline mutations in ovarian cancer: a founder mutation of BRCA1 identified in the Chinese population / U. Khoo [et al.] // Hum Mutat, 2002. P. 307-308.
- 16. Liede A. Hereditary Breast and Ovarian Cancer in Asia. Genetic Epidemiology of BRCA1 and BRCA2 / A. Liede, A. Narod // Hum. Mutat, 2002. P. 413-424
- 17. Mitchell G. Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers / G. Mitchell [et al.] // Cancer Res. - 2006. - Vol. 66. – P - 1866 –1872
- 18. Pohlreich P. High proportion of recurrent germline mutations in the BRCA1 gene in breast and ovarian cancer patients from the Prague area / Pohlreich P. [et al.] // Breast Cancer Research. -2005. V.7, № 5. P. 728-736.
- 19. Song C. The prevalence of BRCA1 and BRCA2 mutations in eastern Chinese women with breast cancer / C. Song [et al.] // Cancer Res Clin Oncol. - 2006. P. 617-626.
- 20. Tang N. Prevalence of breast cancer predisposition gene mutations in Chinese women and guidelines for genetic testing / N. Tang [et al.] // Clin Chim Acta. - 2001. P.179-185.
- 21. Van der Looij M. Prevalence of founder BRCA1 and BRCA2 mutations among breast and ovarian cancer patients in Hungary / M. Van der Looij [et al.] // Int. J. Cancer, 2000. V.86. P. 737-740.
- 22. Walsh T. Spectrum of mutations in BRCA1, BRCA2, CHEK2 and TP53 in families at high risk of breast cancer / T. Walsh [et al.] // JAMA. - 2006. - Vol. - 295. P. - 1379-1388.

Ю.Ю. Федорова, А.С. Карунас, О.А. Гра, Н.Н. Рамазанова, Л.Л. Гурьева, Э.И. Эткина, И.В. Голденкова-Павлова, Э.К. Хуснутдинова

АССОЦИАЦИЯ ПОЛИМОРФНЫХ ВАРИАНТОВ ГЕНОВ СИСТЕМЫ БИОТРАНСФОРМАЦИИ С БРОНХИАЛЬНОЙ АСТМОЙ У ТАТАР

УДК: 577.21

С помощью аллель-специфичной гибридизации на биочипе определены частоты генотипов и аллелей полиморфных локусов генов биотрансформации ксенобиотиков (CYP1A1, CYP2D6, GSTT1, GSTM1, MTHFR, CYP2C9, CYP2C19 и NAT2) у больных бронхиальной астмой и здоровых индивидов татарской этнической принадлежности. Выявлены маркеры повышенного риска развития астмы – аллели NAT2*481T, MTHFR*677С и генотип NAT2*481T/T.

Ключевые слова: бронхиальная астма, полиморфный вариант, ассоциация, биологические микрочипы, гены системы биотрансформации

Using allele-specific hybridization on the biochip the frequencies of xenobiotic-metabolizing gene polymorp Hisms (CYP1A1, CYP2D6, GSTT1, GSTM1, MTHFR, CYP2C9, CYP2C19 u NAT2) in patients with bronchial asthma and controls of Tatar ethnicity have been determined. It has been shown that NAT2*481T/T genotype and NAT2*481T, MTHFR*677C alleles are markers of asthma risk.

Keywords: bronchial asthma, polymorp Hism, association, oligonucleotide biochips, xenobiotic-metabolizing genes.

Собранные за последние 20 лет данные свидетельствуют о сущест-

Институт биохимии и генетики Уфимского научного центра РАН: ФЕДОРОВА Юлия Юрьевна - аспирант; e-mail: fedorova-y@ yandex.ru, KAPУНАС Александра Станиславовна - к.м.н., с.н.с., ХУСНУТДИНОВА Эльза Камилевна – д.б.н., проф., зав. отделом молекулярной генетики человека. Кафедра детских болезней Башкирского гос. мед. ун-та: РАМАЗАНОВА Наиля Назыфовна - к.м.н., ассистент, ГУРЬЕВА Лариса Львовна – к.м.н., доцент, ЭТКИНА Эсфирь Исааковна - д.м.н., проф., зав. кафедрой, Институт общей генетики им. Н.И. Вавилова РАН: ГРА Ольга Алексеевна - к.б.н., н.с., ГОЛДЕНКОВА-ПАВЛОВА Ирина Васильевна – д.б.н., зав. группой биохимической генетики.

вовании взаимосвязи между генетическими вариациями в геноме и возникновением различных заболеваний [5]. Существуют гены, полиморфизм в которых коррелирует с рядом патологий, а также с вариабельностью в отношении метаболизма целого спектра лекарственных препаратов, потенциальных канцерогенов и ксенобиотиков. К таким генам относятся гены системы биотрансформации, определяющие индивидуальную чувствительность организма к факторам внешней среды. На сегодняшний день доказано, что полиморфные варианты генов детоксикации ксенобиотиков обуславливают наследственную предрасположенность к множеству многофакторных заболеваний, в том числе и к аллергическим [9, 11, 16]. Бронхиальная астма (БА) принадлежит к числу наиболее распространенных хронических воспалительных заболеваний. В мире среди взрослого населения БА встречается с частотой 1-18% и почти вдвое чаще регистрируется у детей [2]. В настоящей работе нами проведено исследование 13 полиморфных локусов в восьми генах биотрансформации ксенобиотиков: CYP1A1 (4887C>A, 4889A>G, 6235T>C), CYP2D6 (1934G>A), GSTT1 (делеция), GSTT1 (делеция), MTHFR (677C>T), CYP2C9 (430C>T, 1075C>T), CYP2C19 (681G>A) u NAT2 (481C>T, 590G>A, 857G>A) у больных БА и здоровых индивидов татарской этнической принадлежности, проживающих в Республике Башкортостан.

Материалы и методы

В работе использованы образцы ДНК 96 пациентов с бронхиальной астмой, средний возраст 24 года. Диагноз заболевания устанавливался на основании данных клинического и лабораторного обследования, кожных аллергологических проб, спирографии. В качестве контроля исследована группа здоровых индивидов без каких-либо признаков аллергических заболеваний, состоящая из 99 чел., средний возраст 20 лет. Все обследуемые лица татарской этнической принадлежности и являются жителями Республики Башкортостан.

ДНК выделяли из лимфоцитов периферической крови методом фенольно-хлороформной экстракции по стандартной методике [10]. Необходимые для анализа фрагменты ДНК получали с помощью двухэтапной мультиплексной полимеразной цепной реакции (ПЦР). Типы исследованных полиморфных вариантов и поспеловательности праймеров опубликованы ранее [3]. Для гибридизации на биочипе использовали флуоресцентно меченые образцы, полученные на второй стадии мультиплексной ПЦР. Микрочипы были разработаны и изготовлены в лаборатории биологических микрочипов Института молекулярной биологии им. В.А. Энгельгардта РАН. После проведения гибридизации флуоресцентный сигнал от ячеек микрочипа регистрировали с помощью портативного анализатора биочипов, снабженного камерой ПЗС и программным обеспечением Imageware («Биочип-ИМБ», Москва) [3].

При попарном сравнении частот аллелей и генотипов в группах больных и контроля применялся критерий X² для таблиц сопряженности 2х2 с поправкой Йейтса на непрерывность (http://www. biometrica.tomsk.ru/). Статистически значимыми считали различия при р<0,05. В случае наличия достоверных отличий в исследуемых выборках проводилась оценка показателя отношения шансов (odds ratio, OR) по формуле $OR = (a \times d) / (b \times c)$, где а и b – число больных с наличием или отсутствием данного генотипа (аллеля) соответственно, а с и d – число здоровых лиц с наличием или отсутствием данного генотипа (аллеля).

Результаты и обсуждение

Проведенная нами оценка распределения частот аллелей и генотипов полиморфных локусов *CYP1A1*

(4887С>A, 4889A>G, 6235T>C), СҮР2D6 (1934G>A), GSTT1 (делеция), GSTT1 (делеция), GSTT1 (делеция), СҮР2С9 (430С>Т, 1075С>Т), СҮР2С19 (681G>A) и NAT2 (590G>A, 857G>A) не выявила статистически значимых различий между сравниваемыми группами больных бронхиальной астмой и контроля (Р>0,05). Установлена ассоциация бронхиальной астмы с полиморфными вариантами генов NAT2 (481C>T) и MTHFR (677C>T) у индивидов татарской этнической принадлежности (р<0,05).

Ариламин-N-ацетилтрансфераза-2 (NAT2) принимает участие в метаболизме различных ксенобиотиков, к которым относятся многие используемые пекарственные препараты и экзогенные химические вещества. В ряде работ показано, что при ацетилировании происходит инактивация аминов, в том числе и гистамина, который является медиатором аллергического воспаления. Избыток гистамина приводит к аккумулированию в тканях его ацетилированных форм, которые образуют физиологический резерв для последующих процессов деацетилирования [16]. В состав кодирующего района гена NAT2 входит участок длиной 701 п.н., в котором у разных индивидов выявлены 16 точечных мутаций, в том числе, 12 транзиций, три трансверсии и одна делеция, приводящая к сдвигу рамки считывания. В настоящее время на основе сопоставления генетических и биохимических данных выделяют аллели, определяющие фенотип медленного ацетилирования – NAT2*5 (481C>T), NAT2*6 (590G>A), NAT2*7 (857G>A) и аллель «дикого типа» - NAT2*4, не содержащий вышеперечисленных замен [1, 4].

Проведен анализ распределения частот аллелей и генотипов по трем полиморфным локусам 481C>T, 590G>A и 857G>A гена NAT2 у больных БА татарской этнической принадлежности и в соответствующей группе здоровых индивидов. Выявлен ряд особенностей в распределении частот аллелей гена NAT2 в контрольной выборке татар по сравнению с популяциями Европы и Азии. Так. частота аллеля *NAT2*481T* в популяциях Западной Европы составляет 38-43%, у жителей европейской части России - 36-43% [4, 12], тогда как в популяциях Азии (Китая, Киргизии) частота аллеля NAT2*481T ниже (6-19%) [12]. У татар значение частоты аллеля NAT2*481T, составляющее 29,29%, является промежуточным и вписывается в тенденцию снижения частоты встречаемости аллеля с Запада на Восток. Анализ распределения частот аллелей и генотипов по-

лиморфного варианта 857G>A гена NAT2 в различных популяциях мира выявил обратную тенденцию – увеличение частоты встречаемости аллеля NAT2*857A с Запада на Восток. У европейцев частота аллеля NAT2*857A составила 2-3%, в популяциях Азии – 11-16%, а в выборке татар – 7,07% [8, 16]. По данным литературы, в распределении частот аллелей полиморфного варианта 590G>A гена NAT2 не обнаружено существенных межэтнических различий. Для населения Европы характерна частота встречаемости аллеля NAT2*590A - 26-27%, у жителей Азии – 23-30%, а в контрольной группе татар - 27,27% [4, 8, 12].

Последующий анализ полиморфного варианта 481C>T гена NAT2 выявил статистически значимые различия между выборкой больных БА и контрольной группой (табл. 1). В группе больных обнаружено достоверное увеличение частоты гомозиготного генотипа *NAT2*481T/T* (20,00%) и аллеля NAT2*481T (38.95%) по сравнению с контролем (7,07 и 29,29% соответственно). Показатель соотношения шансов для носителей генотипа NAT2*481T/T составил 3,29 (95%CI 1,31-8,23), для носителей аллеля NAT2*481T - 1,54 (95%CI 1,01-2,35). Аллель *NAT2**481C, соответственно, является маркером пониженного риска развития БА (OR=0,65, 95%CI 0,43-0,99) (табл. 1).

Полученные данные согласуются с результатами других исследований. Так, в работах Zielinska E. с соавт. было

Таблица 1

Распределение частот генотипов и аллелей 481C>T полиморфного варианта гена NAT2 у больных БА и здоровых индивидов

Генотип/ аллель		Группа	Контрольная
		больных	группа
		БА (N=95)	(N=99)
*C/*C	n (p)	40 (42,11)	48 (48,48)
	P	0,37	-
	OR		
	(95%CI)		-
*C/*T	n (p)	36 (37,89)	44 (44,44)
	P	0,35	-
	OR	-	-
	(95%CI)		
*T/*T	n (p)	19 (20,00)	7 (7,07)
	P	0,008	-
	OR	3,29	
	(95%CI)	(1,31-8,23)	-
*C	n (p)	116 (61,05)	140 (70,71)
	P	0,045	-
	OR	0,65	
	(95%CI)	(0,43-0,99)	-
*T	n (p)	74 (38,95)	58 (29,29)
	P	0,045	-
	OR	1,54	
	(95%CI)	(1,01-2,35)	-

Таблица 2

Распределение частот генотипов и аллелей 677С>Т полиморфного варианта гена MTHFR у больных БА и здоровых индивидов

Генотип/аллель		Группа	Контроль-
		больных	ная группа
		БА (N=96)	(N=99)
*C/*C	n (p)	63 (65,63)	51 (51,52)
	P	0,05	-
	OR (95%CI)	-	-
*C/*T	n (p)	29 (30,21)	39 (39,39)
	P	0,18	-
	OR (95%CI)	-	-
*T/*T	n (p)	4 (4,17)	9 (9,09)
	P	0,17	-
	OR (95%CI)	-	-
*C	n (p)	155 (80,73)	141 (71,21)
	P	0,03	-
	OD (050/GD)	1,69	
	OR (95%CI)	(1,06-2,72)	-
*T	n (p)	37 (19,27)	57 (28,79)
	P	0,03	-
	OR (95%CI)	0,59	
	OR (33/0C1)	(0,37-0,95)	_

Примечание к табл. 1, 2: N – объем выборки; n - численность групп; р - частота аллеля (генотипа); OR (odds ratio) - отношение шансов; Р – значение достоверности; 95%СІ (confidence interval) – 95% доверительный интервал, рассчитанный при статистически значимых различиях между сравниваемыми выборками.

показано, что медленные ацетиляторы преобладают в группе пациентов с аллергией, проживающих на территории центральной Польши, по сравнению с контролем (91 и 62% соответственно) [16]. Достоверное увеличение частот генотипов, определяющих фенотип медленного ацетилирования среди больных с аллергическим заболеваниями из Польши, было отмечено и в работах Gawronska-Sklarz B. с соавт. [6]. Описана ассоциация между медленным ацетилированием, обусловленным сочетанием генотипов гена NAT2, и чувствительностью к астме у больных из Турции [11].

Метилентетрагидрофолат-редуктаза (MTHFR) обеспечивает превращение 5, 10-метилентетрагидрофолата в 5-метилтетрагидрофолат, который является главной циркулирующей в организме формой фолиевой кислоты. В свою очередь, фолиевая кислота участвует во многих биохимических путях. включая метилирование гомоцистеина и синтез нуклеотидов. Полиморфный вариант 677C>T гена MTHFR приводит к аминокислотной замене Ala222Val в каталитическом домене *MTHFR*, что ведет к синтезу фермента со сниженной активностью. В ряде работ показано, что дефицит фолата ассоциирован с различными патологиями, связанными с активацией клеточного иммунного ответа (Th1 иммунный ответ), которые могут приводить к развитию болезни Альцгеймера, ревматоидного артрита, сердечно-сосудистых заболеваний [7, 9].

Распределение частот генотипов и аллелей полиморфного варианта MTHFR (677C>T) у больных бронхиальной астмой и в контрольной группе представлено в табл.2. В контрольной группе частота аллеля *MTHFR**677T составила 28,79%, что входит в диапазон частот аллелей, характерных для популяций Европы (23-41%) и Азии (Китая) (23-45%) [13, 15]. Самая высокая частота аллеля MTHFR*677T выявлена у латиноамериканцев - 50%, самая низкая - у афроамериканцев (11%) [14]. В исследованной нами группе больных бронхиальной астмой отмечено достоверное увеличение частоты аллеля MTHFR*677C (80,73%) по сравнению с контролем (71,21%, OR=1,69, 95%CI 1,06-2,72), тогда как аллель MTHFR*677T с более высокой частотой определен у здоровых индивидов – в 28,79% случаев по сравнению с 19,27% у больных (OR=0,59, 95%CI 0,37-0,95).

Следует отметить, что в исследованиях Husemoen L. с соавт. обнаружена ассоциация между маркерами фолатного метаболизма и развитием атопии. Авторы предположили, что одной из причин развития аллергической реакции у носителей генотипа *MTHFR**677T/Т может быть изменение Th1/Th2 иммунного ответа. Возможно, дефицит фолата способен вызывать Th1/Th2 дисбаланс, что приводит к увеличению продукции цитокинов Th2типа, и, в дальнейшем, к развитию аллергического воспаления. Дополнительно, развитие атопии может также обуславливаться направленным эффектом повышенного уровня гомоцистеина, который обладает выраженным токсическим действием на клетки [9]. Наблюдаемые противоречия с нашими данными можно объяснить популяционными различиями (этнические и географические вариации в распределении частот аллелей данного локуса). Кроме того, существует множество факторов, влияющих на уровень гомоцистеина в организме: поступление фолиевой кислоты и витаминов группы В с пищей, существование других генов, вовлеченных в метаболизм фолата [14].

На основании результатов проведенного исследования полиморфных локусов генов системы биотрансформации ксенобиотиков (СҮР1А1, CYP2D6, GSTT1, GSTT1, MTHFR, CYP2C9, CYP2C19 и NAT2) можно

заключить, что аппельные варианты ариламин-N-ацетилтрансферазы-2 и метилентетрагидрофолатредуктазы вносят вклад в развитие бронхиальной астмы у татар. Маркерами повышенного риска развития БА являются генотип NAT2*481T/T, аллели NAT2*481T, MTHFR*677C, маркерами пониженного риска - аллели NAT2*481С и MTHFR*677Т.

Литература

- 1. Голденкова-Павлова И.В., Брускин С.А., Абдеев Р.М. и др. Сравнительный анализ результатов фенотипирования и генотипирования по полиморфизму N-ацетилирования у человека // Генетика. – 2006. – T.42.– C.1-8.
- 2. Глобальная стратегия лечения и профилактики бронхиальной астмы / Под ред. А. Г. Чучалина. – М.: «Атмосфера», 2007.
- 3. Глотов А.С., Наседкина Т.В., Иващенко Т.Э. и др. Создание биочипа для анализа полиморфизма в генах системы биотрансформации // Молекулярная биология. – 2005. – Т.39 (3). – С.403-412.
- 4. Кожекбаева Ж.М., Гра О.А., Фадеев В.С. и др. Ассоциация полиморфизма NAT2 с риском развития псориаза в Московской популяции // Молекулярная биология. – 2009. – Т.43 (1). – С.1-15.
- 5. Ляхович В.В., Вавилин В.А., Макарова С.И. и др. Экогенетический аспект полифакторных заболеваний // Вестник ВОГиС. - 2006. - Т.10 (3). - C. 514-519.
- 6. Gawronska-Szklarz B., Pawlik A., Czaja-Bulsa G. et al. Genotype of N-acetyltransferase 2 (NAT2) polymorp Hism in children with immunoalobulin Emediated food allergy // Clin Pharmacol Ther. - 2001. - V.69 (5). - P.372-378.
- 7. Granell R., Heron J., Lewis S. et al. The association between mother and child MTHFR C677T polymorpHisms, dietary folate intake and childhood atopy in a population-based, longitudinal birth cohort // Clin. Exp. Allergy. - 2008. - V.38 (2). - P.320-328. 8. Hamdy S.I., Hiratsuka M., Narahara K. et al. Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population // Br. J. Clin. Pharmacol. - 2003. - V.55 (6). - P.560-569.
- 9. Husemoen L.L., Toft U., Fenger M. et al. The association between atopy and factors influencing folate metabolism: is low folate STATus causally related to the development of atopy? // Int. J. Epidemiol. - 2006. - V.35 (4). - P.954-961.
- 10. Mathew C.C. The isolation of high molecular weight eucariotic DNA // Methods in molecular biology / Ed. Walker J.M. N.Y.; Human press. - 1984. - V.2 - P.31-34.
- 11. Nacak M., Aynacioglu A.S., Filiz A. et al. Association between the N-acetylation genetic polymorp Hism and bronchial asthma // Br. J. Clin. . Pharmacol. – 2002 – V.54 (6). – P.671-674.
- 12. Rabstein S., Unfried K., Ranft U. et al. Variation of the N-acetyltransferase 2 gene in a Romanian and a Kyrgyz population // Cancer. Epidemiol. Biomarkers. Prev. - 2006. - V.15 (1). - P.138-141.
- 13. Skibola C.F., Smith M.T., Kane E. et al. Polymorp Hisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults // Proc. Natl. Acad. Sci. U S A. – 1999. – V.96 (22). – P.12810-12815.
- 14. Trabetti E. Homocysteine, MTHFR gene polymorp Hisms, and cardio-cerebrovascular risk // J. Appl. Genet. - 2008. - V.49 (3). - P.267-282.
- 15. Yu J., Chen B., Zhang G. et al. The 677 C-->T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene in five Chinese ethnic groups // Hum. Hered. - 2000. - V.50 (4). - P.268-270.
- 16. Zielinska E., Niewiarowski W., Bodalski J. et al. Arylamine N-acetyltransferase (NAT2) gene mutations in children with allergic diseases // Clin. Pharmacol. Ther. - 1997. - V.62. - P. 635-642.