С.В. Маркова, П.Г. Петрова, Н.В. Борисова, У.Д. Антипина, Е.В. Пшенникова, Г.А. Егорова

ЗДОРОВЬЕ И ЭЛЕМЕНТНЫЙ СТАТУС ДЕТЕЙ ЮЖНОЙ ЯКУТИИ (на примере Алданского района)

УДК 616-053.2 (571.56)

Существует достаточно перспективный подход к оценке силы и характера влияния разработок Эльконского месторождения на уровень здоровья населения. Совершенно ясно, что одним из важнейших условий осуществления экологической экспертизы и медико-экологического мониторинга является возможность стандартизованно и в массовых масштабах оценить уровень здоровья населения конкретной экологической зоны, а при необходимости отследить динамику уровня здоровья населения при воздействии экстремальных экологических факторов.

Ключевые слова: здоровье, дети, экология, окружающая среда, факторы.

In Yakutia a number of projects, including working out of the Elkonsky deposit which will lead to some ecological-technological risks, to ecological-social and medical-ecological consequences is formed and realized. Level of a natural radiating background in settlements of Aldan area as a whole doesn't exceed the established specifications, but a little above republic values. At ranging on structure of diseases on the first place are registered illnesses of nervous system, on the second – illnesses of digestive organs, on the third – illnesses of respiratory organs, on the fourth – congenital developmental anomalies, on the fifth – illnesses of endocrine system.

Keywords: health, children, ecology, environment, ecological factors.

Актуальность исследования. На пороге нового тысячелетия перед человечеством остро встали глобальные проблемы социально-экономического, демографического и экологического характера. Состояние здоровья детей один из наиболее чувствительных показателей, отражающих изменения качества окружающей среды. Экологически детерминированные состояния и заболевания проявляются не у всех членов популяции. Относительный риск экопатологии, как, правило, невелик. Они возникают только у контингентов детей, отличающихся повышенной чувствительностью к конкретным химическим агентам и в результате длительного воздействия на организм невысокой интенсивности. При этом прослеживается определенная связь структуры заболеваемости с экологическими особенностями региона [1, 5].

Для выяснения этой связи проводят сопоставление медико-демографических показателей территории со степенью превышения ПДК и параметров регионального фона отдельных классов ксенобиотиков в компонентах биосферы, с их содержанием в секретах и биосубстратах, анализ распространенной функциональной и клинической патологии, результатов

МИ СВФУ им. М.К. Аммосова: МАРКОВА Сардана Валерьевна — к.м.н., доцент, saramark@mail.ru, ПЕТРОВА Пальмира Георгиевна — д.м.н., проф., зав. кафедрой, БОРИСОВА Наталья Владимировна — к.м.н., доцент, АНТИПИНА Ульяна Дмитриевна — к.м.н., доцент, ПШЕННИКОВА Елена Виссарионовна — к.б.н., зав. кафедрой; ЕГОРОВА Ганна Алексеевна — д.м.н., I зам. министра МЗ РС(Я).

проспективного медицинского наблюдения за популяциями высокого риска [4, 8].

В настоящее время отрицательные факторы антропогенного воздействия, включая избыточное поступление тяжелых металлов и дефицит жизненно важных химических элементов. неблагоприятные климатогеографические условия проживания значительной части населения России способствуют снижению здоровья на индивидуальном и популяционном уровнях. Отклонения поступления в организм макро- и микроэлементов, нарушение их соотношений в рационе питания непосредственно сказываются на деятельности организма и могут влиять на его сопротивляемость.

Загрязнение окружающей среды в первую очередь сказывается на здоровье детского населения в силу интенсивности обменных процессов, несовершенства гомеостаза, относительной оседлости, что, следовательно, и может стать причиной снижения иммунитета, хронизации различных заболеваний, умственного и физического развития и врожденных уродств [2, 3].

Уровень здоровья населения, проживающего в регионах с неблагоприятной экологической ситуацией, может рассматриваться в качестве интегрального индикатора экологии человека, т.к. практически все экстремальные факторы внешней среды, включая социальные, реализуют свое действие на человека с непременным изменением нормального течения физиологических процессов и с нарушением защитных сил организма [3, 6].

В настоящее время необходимо глубокое изучение и проведение детальной оценки возможной антропогенной нагрузки и трансформации в едином, комплексном, динамическом блоке освоения Южной Якутии с проведением натурных исследований природных факторов и среды обитания человека [7, 9].

В целом по Алданскому району уровень естественного радиационного фона в населенных пунктах не превышает установленных нормативов (33 мкР/час) и регистрируется в пределах 20 мкР/час, но было отмечено, что данные показатели все же несколько выше среднереспубликанских значений, а на отдельных участках г. Алдана и пригородов отмечаются более высокие значения, до 40 мкР/час [9].

Исследования почвы Алданского района показали, что содержание естественных (радий-226, торий-232, калий-40) и искусственных (цезий-137) радионуклидов в отдельных пробах значительно выше среднереспубликанских значений (радий-226 - 23,2 Бк/кг, торий-232 - 20,1, калий-40 - 548, цезий-137 - 3,9 Бк/кг) [10]. Удельная активность выпадений, концентраций характеризовалась бериллием-7 и цезием-137. Концентрация цезия-137 была выше предыдущего года на 99%. Максимальная месячная концентрация цезия-137 наблюдалась по г. Алдану в апреле месяце и составила 10,6 Бк/м³х10⁻⁵. Среднегодовая величина концентраций за 2011 г. по всем пунктам наблюдений равнялась 0,012 Бк/м³х10⁻⁵. Также с марта по май 2011 г. в приземном воздухе отмечалось наличие искусственных радионуклидов: йода-131, йода-132, цезия-134, цезия-137, которые поступили в атмосферу РС (Я) в результате трансграничного переноса радиоактивных продуктов аварии на японской АЭС «Фукусима». Величины указанных радионуклидов не превышали установленных нормативов НРБ-99/2009 и СанПиН 2.6.1.2523-09 [10].

В связи с этим в условиях окружающей среды Алданского района, подвергающемуся антропогенному и техническому прессу, обусловленных промышленным освоением его территории, необходимым становится мониторинг здоровья населения, особенно детского.

Цель исследования - провести оценку состояния здоровья детей с Алексеевск г.Томмот Алданского райо-

Материал и методы исследования. Материалом для настоящего исследования послужили данные медицинской экспедиции Медицинского института СВФУ им. М.К. Аммосова в Алданский район с. Алексеевск.

Всего осмотрено 357 детей, из них мальчиков - 168, девочек - 189.

Определение элементного состава биосубстратов проводилось методами атомной эмиссионной и масс- спектрометрии с индукционно связанной аргоновой плазмой по методике, утвержденной МЗ РФ в испытательной лаборатории АНО «Центр биотической медицины», г. Москва (аттестат аккредитации ГСЭН.RU.ЦОА.311, регистрационный номер в Государственном реестре POCC RU.0001.513118 от 29 мая 2003)

Результаты и их обсуждение. В Алданском районе заболеваемость детского населения, являющегося индикатором экологического неблагополучия, составила в 2010 г. - 2349,4 на 1000 населения, по Республике Саха (Якутия) этот показатель составил 2255,0 на 1000 населения.

Изучение структуры заболеваемости показало существенный рост новообразований злокачественных у детей от 10,7 на 1000 населения в 2008 г. до 18,0 на 1000 населения в 2010 г. Заболеваемость взрослого населения также возросла с 225,0 в 2008 г. до 234,0 в 2010 г. Отмечается рост врожденных аномалий развития с 26,0 на 1000 детей в 2008 г. до 34,2 - в 2010 г. (табл.1).

По национальному составу обследованные дети распределились следующим образом: русские - 329 (92,16%), украинцы - 13 (3,64%), эвеТаблица 1

Распределение детей по классам болезней

Класс болезней по МКБ-10	%
І. Инфекционные и паразитарные болезни	4,8
II. Новообразования	3,4
III. Болезни крови	2,8
IV. Болезни эндокринной системы	10,1
VI. Болезни нервной системы	52,7
VII. Болезни глаза	6,2
ІХ. Болезни органов кровообращения	6,2
Х. Болезни органов дыхания	27,5
XI. Болезни органов пищеварения	41,2
XII. Болезни кожи, подкожно-жировой клетчатки и придатков кожи	3,9
XIII. Болезни костно-мышечной системы	7,8
XIV. Болезни мочевыделительной системы	5,6
XVII. Врожденные пороки развития	14,9

+ы - 3 (0,82%), +emцы - 3 (0,82%), +gw-3ты -2 (0,6%), другие -7 (1,96%).

Болезни нервной системы представлены синдромом гиперактивности, дефицита внимания (18,5%), гипоксической, гипоксически-ишемической энцефалопатией, церебрастеническим синдромом, доброкачественной внутричерепной гипертензией (10%), вегето-сосудистой дистонией (8,5%), миатоническим синдромом (4%) и др. В этиологии поражения нервной системы у детей, возможно, влияет патология течения беременности, хронические заболевания матери, социальные условия и т.д. Также не исключается влияние негативных факторов окружающей среды.

Болезни органов пищеварения регистрированы в виде гастритов, дуоденитов, дискинезий желчного пузыря и толстого кишечника. Гастродуодениты регистрированы у 44,6% детей с патологией желудочно-кишечного тракта. В клинике поражения верхнего отдела желудочно-кишечного тракта наиболее часто отмечался болевой синдром - боли в животе (100%) различного характера и интенсивности. Диспепсический синдром у детей выражался в виде тошноты, отрыжки и изжоги (89%). Дискинезии желчевыводящих путей отмечены у 24,7% детей, более превалировал гипертонический тип ДЖВП, в отличие от детей якутской национальности, там более часто регистрируется гипотонический тип ДЖВП. Патология верхнего отдела ЖКТ, билиарной системы приводит к поражению нижнего отдела, что проявляется дискинезией толстого кишечника. Дискинезии толстого кишечника проявляются в виде запоров, неустойчивого стула.

Болезни органов дыхания в основном представлены болезнями ЛОРорганов, в виде хронического тонзиллита, фарингита, отита и т.п. Хронический

тонзиллит диагностирован в 21,2% случаев. Хронический отит выявлен у 2,9% случаев. Острые формы фарингитов и отитов регистрированы в виде осложнений вирусных инфекций у 6% детей. Среди патологии органов дыхания также выделяется бронхиальная астма. Бронхиальная астма средней степени тяжести регистрирована у 5 детей.

Диагностика врожденных пороков развития основывалась на клинических данных и составила 15% обследованных детей. В класс врожденных пороков (аномалий) развития по классификации болезней учитывались деформации ушей, стоп, невус, птоз,

Таблица 2

Среднее содержание химических элементов в волосах детей (мкг/г)

Элемент	Девочки n = 131	Мальчики n = 83
Al	10,14±2,3	12±1,62
As	0,06±0,028	0,13±0,034
В	2,02±1,5	1,78±0,42
Be	$0,0001\pm0,001$	0,01±0,002
Ca	450±56	368±54
Cd	$0,09\pm0,02$	$0,14\pm0,02$
Co	$0,07\pm0,02$	$0,11\pm0,03$
Cr	0,44±0,07	1±0,12
Cu	9,72±0,47	9,93±0,99
Fe	20,28±2,1	24,53±3,89
Hg	0,47±0,04	$0,33\pm0,05$
I	0,47±0,09	$0,6\pm0,16$
K	405±112	988±204
Li	0,03±0,018	$0,06\pm0,019$
Mg	31±5	31±7
Mn	1,76±0,35	0,9±0,16
Na	363±75	1158±246
Ni	0,6±0,18	$0,69\pm0,33$
P	133±4	159±14
Pb	0,75±0,12	3,09±0,86
Se	0,73±0,13	0,7±0,11
Si	24,28±4,84	17,2±2,38
Sn	0,6±0,18	0,68±0,16
V	0,06±0,01	$0,11\pm0,02$
Zn	173±16	127±9

Таблица 3

Изменение среднего содержания химических элементов в волосах мальчиков по отношению с их содержанием в волосах девочек

Содержание в волосах мальчиков по отношению к содержанию в волосах девочек	Элемент
Повышено	Cr, K, Na, Pb
Понижено	Hg, Mn, Zn

врожденные пороки сердца и т.д.

Исходя из литературных данных и результатов проведенного исследования, можно предположить, что на рост общей заболеваемости по основным классам болезней у обследованных детей могут оказывать влияние элементозы.

На основании анализа среднего содержания химических элементов в волосах детей можно представить элементный профиль детей.

У девочек Алданского района отмечается более высокое содержание в волосах Co, Se, Sn и Zn, в то же время у них относительно снижено содержание Be, Cr и Pb.

У мальчиков «элементный портрет» можно назвать среднестатистическим для Республики Саха (Якутия), за исключением более высокого уровня в волосах Со и Sn.

Как видно из представленных в табл. 2 данных, мальчики характеризуются в целом относительно повышенным содержанием в волосах химических элементов, причем в большей степени это относится к токсичным и потенциально токсичным элементам.

Таким образом, содержание ряда эссенциальных химических элементов (Сг, K, Na, Pb) в волосах мальчиков также выше, чем у девочек.

С другой стороны, риск развития гипоэлементозов здесь максимален: спектр элементов с недостаточным поступлением в организм широкий, состоит из 9 элементов (Al, Co, Cr, Cu, I, K, Mg, P, Se), а частота пониженного содержания зачастую самая высокая (Al, Cr, K, Mg).

Таким образом, у детей накопление в волосах токсичных химических элементов в большей степени свойственно мужской части детской популяции (мальчикам), а недостаточное содержание эссенциальных — девочкам. Оценка риска развития гипо- и гиперэлементозов у детей совпадает с таковой у взрослого населения: риск гиперэлементозов токсичных химических элементов выше у мальчиков, а гипоэлементозов эссенциальных — у девочек.

Заключение. Таким образом, создание комплексной научно обоснованной программы исследований причинноследственных взаимосвязей между степенью воздействия патологических экзогенных факторов (радиационные, химические) на детский организм и уровнем развития различных патологических состояний представляется не только целесообразной, но и жизненно необходимой в силу имеющегося и фундаментального, и прикладного компонентов.

Литература

1. Агаджанян Н.А. Экологическая физиология человека / Н.А. Агаджанян, А.Г. Марачев, Г.А. Бобков. –М.: КРУК, 1999. – 398 с.

Agadjanyan N.A. Ecological physiology of the man / N.A. Agadjanyan, A.G. Marachev, G.A. Bobkov. – M.: KRUK, 1999. - 398 p.

2. Агаджанян Н.А. Человек в условиях Севера / Н.А. Агаджанян, П.Г. Петрова. – М.: АГМА, 1996 –179 с.

Agadjanyan N.A. Man in conditions of North / N.A. Agadjanyan, P.G. Petrova. - M.: AGMA, 1996 -179 p.

3. Борисова Н.В. Эколого-физиологическое обоснование формирования функциональных резервов у коренных жителей Республики Саха (Якутия) / Н.В. Борисова, П.Г. Петрова // Наука и образование. №2 (50), 2008. с. 55-61.

Borisova N.V. Ecology-physiological substantiation of formation of functional reserves at the inhabitants of Republic Sakha (Yakutia) / N.V. Borisova, P.G. Petrova // Science and education, №2 (50), 2008, P. 55-61.

4. Горбанев С.А. Мониторинг среды обитания с учетом природных и техногенных факторов /Горбанев С.А., Маймулов В.Г., Воробьева Л.В. // Материалы X Всероссийского съезда гигиенистов и санитарных врачей (книга II). – М., 2007. – с. 634-638.

Gorbanev S.A. Monitoring of environment in view of natural and technogenic factors / S.A.

Gorbanev, V.G. Maimulov, L.V. Vorobieva // Materials of the X All-Russia congress of sanitary doctors (book II). – M., 2007. - P. 634-638.

5. Ермакова Н.В. Экологический портрет человека на Севере и вопросы этнической физиологии / Н.В. Ермакова // Материалы XI Международного симпозиума «Экологофизиологические проблемы адаптации». – М.: Изд-во РУДН, 2003–С. 183.

Ermakova N.V. An ecological portrait of the man in North and questions of ethnic physiology / N.V. Ermakova // Materials of the XI International symposium «Ecology-physiological problems of adaptation » -M.: RU. 2003 – P.183.

6. Казначеев В.П. Проблема адаптации человека / В.П. Казначеев // Некоторые итоги и перпективы исследований. –Новосибирск, 1978. – С.56.

Kaznacheev V.P. A problem of adaptation of the man / V.P. Kaznacheev // Some results and perspective of researches. - Novosibirsk, 1978 - P.56.

7. Нефедов Б.Н. Некоторые экологотехнологические риски создания крупных гидротехнических объектов на севере Сибири / Б.Н. Нефедов // Материалы IX Международного симпозиума по развитию холодный регионов. – Якутск, 2010. – с. 42.

Nefedov B.N. Some ecology-technological risks of creation of large hydraulic engineering objects in North of Siberia / B.N. Nefedov // Materials of the IX International symposium on development of cold regions. - Yakutsk, 2010. - P. 42.

8. Панин Л.Е. Гомеостаз человека в условиях высоких широт / Л.Е. Панин // 13 межд. конгресс по приполярной медицине, 12-16 июня 2006 г., Новосибирск. – Новосибирск, 2006. – С. 12–13.

Panin L.E. Homeostasis of the man in conditions of high latitudes / L.E. Panin // Materials of XIII International congress on Polar medicine, June 12-16, 2006, Novosibirsk. - Novosibirsk, 2006. - P. 12-13.

9. Современное состояние и эпидемиологический прогноз по природно-очаговым и особо опасным инфекциям на территории Якутии в условиях интенсивного промышленного региона (мегапроекты) и глобального изменения климата / Н.Г. Соломонов, И.Я. Егоров, В.Ф. Чернявский и др. // Материалы IX Международного симпозиума по развитию холодных регионов. – Якутск, 2010. – с. 228.

Modern condition and epydemiology the forecast on especially dangerous infections in territory of Yakutia in conditions of intensive industrial region (megaprojects) and global change of a climate / N.G. Solomonov, I.Ya. Egorov, V.F. Chernyavsky // Materials of IX the International symposium on development of cold regions. - Yakutsk, 2010. – 228 p.

10. Доклад об экологической ситуации в Республике Саха (Якутия) за 2011 г.

Report on an ecological situation in Republic Sakha (Yakutia) for 2011.