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Introduction. One of the key mecha-
nisms in human physiology is the ability 
to sense and regulate body temperature, 
which is crucial for survival. The body's 
defense reactions include fever, which 
is accompanied by an increase in body 
temperature in response to pyrogens [14] 
that stimulates an immune response [6]. 
An increase in body temperature during 
fever occurs due to shivering (in skele-
tal muscles) and nonshivering (in brown 
adipose tissue) thermogenesis, and a 

decrease in passive heat loss occurs 
due to vasoconstriction [8]. However, 
the main contribution to increased heat 
production in fever is made by shivering 
thermogenesis, which is accompanied by 
involuntary muscle contraction (shiver) 
and the release of the hormone irisin into 
the blood [7,15].

Prostaglandin E2 is a principal fever 
mediator that can also control the bas-
al mechanisms of thermoregulation. In 
2015, J. Foster and his colleagues pub-
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lished a paper on a new hypothesis about 
the role of prostaglandin E2 in thermoreg-
ulation processes under cold stress [12]. 
The main propositions of the hypothesis 
are based on the fact that cold-sensitive 
neurons and EP3 neurons (prostaglandin 
E2 receptor) activate the same areas of 
the hypothalamus that are responsible 
for thermoregulation [12]. In this regard, 
involuntary thermogenic reactions to 
maintain body temperature during cold 
stress are identical to the mechanisms 
that increase body temperature during 
fever [12].

Prostaglandin E2 is formed as a result 
of oxygenation and cyclization of arachi-
donic acid by the enzyme cyclooxygen-
ase-2 [1]. The cyclooxygenase-2 enzyme 
is encoded by the PTGS2 gene [2] locat-
ed on chromosomal region 1q25.2-q25.3 
and containing 10 coding exons [2,3]. A 
large number of single-nucleotide poly-
morphic regions (SNPs) are known in 
the PTGS2 gene, some of which are 
considered functionally significant [13]. 
These regions include SNP rs689466, 
which is located in the promoter region 
of the PTGS2 gene [10, 13]. Analysis 
of mRNA in human esophageal tissues 
showed that the normal T allele rs689466 
leads to a higher transcriptional activi-
ty of the PTGS2 gene compared to the 
mutant C allele [4, 10]. Since there is 
variability in the transcriptional activity of 
PTGS2 depending on allelic variants of 
the rs689466 polymorphism [4, 10], it is 
likely that this may affect the role of pros-
taglandin E2 in thermoregulation under 
cold stress.

In this regard, the aim of this work is to 
analyze the relationship of the rs689466 
polymorphism of the PTGS2 gene with 
the irisin level in blood plasma in Yakuts 
living in cold climatic conditions.

Material and Methods. Subjects. The 
study involved 263 Yakuts (183 wom-
en and 80 men), with an average age 
of 19.73±1.99 years. At the time of the 
study, none of the participants had any 
health complaints. The study participants 
filled out a questionnaire on their own, in-
dicating their gender, ethnicity, and age. 
All participants gave written informed 
consent to participate in the study. Study 
was approved by the local Biomedical 
Ethics Committee at the Yakut Scientific 
Center of Complex Medical Problems, 
Siberian Branch of the Russian Academy 
Scientific of Medical Sciences, Yakutsk, 
Russia (Yakutsk, Protocol No. 16, and 13 
December 2014).

Anthropometric parameters. Anthro-
pometric parameters (body weight in 
kilograms, height in centimeters) were 
measured in all participants using stan-

dardized methods. Body mass index 
(BMI) was calculated by dividing body 
mass by the square of height. The sam-
ple was divided into three groups ac-
cording to BMI categories [11]: under-
weight (≤18.49 kg/m2), normal weight 
(18.5–24.99 kg/m2), and overweight/
obese (≥25 kg/m2). 

ELISA of irisin levels. Irisin levels in 
fasting blood plasma (μg/ml) were de-
termined using an enzyme-linked immu-
nosorbent assay (ELISA) "Irisin ELISA 
BioVendor" (BioVendor-Laboratorni me-
dicina A..S., Czech Republic). Irisin con-
centration in the samples was measured 
at a wavelength of 450 nm on a VICTOR 
X5 Multilabel Plate Reader Reader (Per-
kin Elmer Inc., USA).

PCR-RFLP analysis of rs689466 of 
the PTGS2 gene. Genomic DNA was 
isolated from blood by phenol-chloroform 
extraction. Genotyping was performed 
using PCR-RFLP analysis. The original 
oligonucleotide primers were selected 
using the FastPCR program (http://prim-
erdigital.com/). The following primer se-
quences were used for rs689466 of the 
PTGS2 gene: F: 5'-ATGAGTTGTGAC-
CATGGATCAA-3', R: 5'-AAAAACCTC-
CAAGTGAGTCTCTT-3'. Detection was 
performed using standard PCR on a 
T100 Thermal Cycler (Bio-Rad, Her-

cules, USA). The PCR conditions for 
rs689466 were as follows: denatur-
ation-95°C (5 min), annealing-58°C (45 
sec), elongation-72°C (7 min), a total of 
30 cycles. Restriction fragment length 
polymorphism (RFLP) analysis was 
performed using endonuclease Bst4C 
I (SibEnzyme, Russia), in accordance 
with the manufacturer's recommenda-
tions. After incubation with Bst4C I, the 
T allele of rs689466 remains intact (432 
bp), while the C allele is split into 295 
bp and 137 bp. The hydrolysis products 
were separated in horizontal electropho-
retic chambers in 2% agarose gel. Elec-
trophoregrams were visualized using 
gel-video documentation systems from 
Bio-Rad (Hercules, USA).

Statistical analysis. The data obtained 
were analyzed using the statistical pro-
gram Statistica 13.5 (TIBCO Software 
Inc., USA). Quantitative results are 
presented as "mean ± standard devia-
tion". The frequency of genotypes of the 
rs689466 polymorphism of the PTGS2 
gene in the Yakut population (n=263) was 
checked for compliance with the Har-
dy-Weinberg equilibrium using the χ2 cri-
terion. To check the normality of the distri-
bution, the Kolmogorov-Smirnov test was 
performed. Associations between the 
rs689466 genotypes of the PTGS2 gene 

Table 1

Table 2

Average irisin levels (μg/ml) in men and women, taking into account BMI

BMI categories Women Men
Underweight 7.88±1.96 (n = 25) 8.52±2.64 (n = 11)

Normal weight 8.43±2.94 (n = 142) 7.65±1.66 (n = 60)
Overweight 8.27±1.96 (n = 16) 9.17±2.11 (n = 9)

Associative analysis of irisin levels and anthropometric parameters
with rs689466 genotypes of PTGS2 gene in Yakut population 

Parameters
Mean ± standard deviation

U p
TT (n=114) СТ+СС (n=88)

Irisin, μg/ml
W
M

8.47±3.05 (n=84)
8.2±1.85 (n=30)

8.38±2.8 (n=58)
7.1±1.25 (n=30)

2397
261

0.87
0.005

Weight, kg
W
M

55.87±6.28 (n=84)
63.6±6.67 (n=30)

55.1±5.10 (n=58)
67.93±7.28 (n=30)

2345
279

0.71
0.01

High, cm
W
M

160.76±6.3 (n=84)
172.17±5.84 (n=30)

161.26±5.7 (n=58)
174.37±5.71 (n=30)

2332
382

0.67
0.32

BMI, kg/m2

W
M

21.59±1.71 (n=84)
21.44±1.86 (n=30)

21.17±1.48 (n=58)
22.31±1.86 (n=30)

2086
331

0.15
0.08

Note: U – the Mann-Whitney criterion; p – level of statistical significance; W – women;
M – men; statistically significant differences are highlighted in bold (p<0.05)
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and irisin levels, weight, height, and BMI 
were analyzed using the Mann-Whitney 
U-test. The values of p<0.05 were con-
sidered statistically significant.

Results and Discussion. Frequen-
cy distribution of alleles and genotypes 
of the rs689466 polymorphism of the 
PTGS2 gene. 

To search for a possible role of 
rs689466 allelic variants of the PTGS2 
gene in thermoregulation under cold 
stress, associative analysis of rs689466 
genotypes with irisin levels in blood plas-
ma was performed in Yakutia residents 
living in extremely cold climatic condi-
tions of Eastern Siberia. The frequencies 
of alleles and genotypes of the rs689466 
polymorphism of the PTGS2 gene were 
determined in the Yakut population 
(n=263). The frequency of the normal T 
allele was 75%, and the frequency of the 
mutant C allele was 25%. The frequen-
cy of occurrence of the TT genotype was 
55%, the heterozygous CT variant was 
40%, and the CC genotype occurred with 
a frequency of 5%. The frequency distri-
bution of rs689466 genotypes in the Ya-

kut sample (n=263) corresponded to the 
Hardy-Weinberg equilibrium (χ2=1.366, 
p=0.24).

Irisin level depending on the genotypes 
rs689466 of the PTGS2 gene. Mean irisin 
plasma levels in women (n=183) and 
men (n=80), taking into account BMI, are 
presented in Table 1. For an associative 
analysis of irisin levels with rs689466 
genotypes, the rare CC genotype was 
combined with the heterozygous CT 
genotype (CT+CC). The analysis was 
performed separately for men (n=60) and 
women (n=142) of normal weight. The 
Kolmogorov-Smirnov test revealed that 
irisin levels in Yakuts with normal weight 
(n=202) did not meet the criteria for 
normal distribution (D=0.122; p<0.01), so 
the association analysis was performed 
using the nonparametric Mann-
Whitney U-test. As a result, significant 
associations were found in men, but 
not in women (Table 2). In carriers of 
the TT genotype, irisin levels (8.2±1.85 
μg/ml) were statistically significantly 
higher (U=261, p=0.005) compared to 
the CT+CC genotypes (7.1±1.25 μg/

ml) (Table 2). Additional analysis of the 
association of rs689466 genotypes with 
anthropometric parameters (weight, 
height, and BMI) (Table 2) showed that 
men with the TT genotype (63.6±6.67 
kg) had a lower weight than men with 
the CT+CC genotypes (67.93±7.28 kg; 
U=279, p=0.01).

Possible mechanism of action of pros-
taglandin E2 in cold stress. Under con-
ditions of thermoneutrality, for optimal 
life activity, the body temperature is kept 
in the range of 36-37°C [9]. Cold stress 
leads to a decrease in body temperature 
(<36-37°C), which in turn stimulates the 
synthesis of prostaglandin E2 [12]. To 
protect the body from hypothermia, pros-
taglandin E2 acts on the EP3 receptor in 
the preoptic region of the hypothalamus, 
which leads to the activation of emergen-
cy thermoregulation mechanisms similar 
to a fever [12].

Most likely, the higher the level of 
prostaglandin E2, the higher the new "set 
value" of body temperature will be. Since 
the T allele rs689466 of the PTGS2 gene 
is characterized by higher transcriptional 
activity [4,10], we assume that carriers 
of the TT genotype should have higher 
levels of prostaglandin E2, which should 
lead to a higher "set value" of body tem-
perature. As a result, carriers of the TT 
genotype will have a more intense or 
longer stage of shivering thermogenesis 
and, consequently, increased irisin levels 
in the blood than those with the CT and 
CC genotypes (Figure). 

However, with constant exposure to 
cold, as in Yakutia, where winter lasts 
about 6 months, and the temperature of 
the atmospheric air during this period var-
ies from -60°C to -20°C, the mechanism 
of thermoregulation by the type of febrile 
reaction can greatly deplete the body. 
Therefore, we assume that the relatively 
low weight of carriers of the TT genotype, 
compared with carriers of the CC and CT 
genotypes, is due to the fact that macro-
nutrients coming from food are consumed 
for more intensive or prolonged shivering 
thermogenesis, and not for the storage 
function, since in cold climatic conditions 
the body is primarily aimed at maintaining 
thermal homeostasis. In turn, the adap-
tive role of the allele variant T rs689466 
of the PTGS2 gene is probably associat-
ed with protective mechanisms directed 
against extremely low atmospheric tem-
peratures, to prevent rapid hypothermia 
and cold injury.

Conclusion. In the present study, the 
TT rs689466 genotype of the PTGS2 
gene was found to be associated with an 
increased irisin level and with a reduced 
weight in men, which may indicate the 

Figure. Prostaglandin E2 (PGE2) in thermoregulation mechanisms during cold stress. A – Lo-
calization of the PTGS2 gene on chromosome 1 (q25.2-q25.3) and the structure of the gene 
indicating the location of rs689466 in the promoter region [Anyona et al., 2020]. B – the mecha-
nism of PGE2 thermoregulation and its effect in carriers of the T allele rs689466 of the PTGS2 
gene. C – the mechanism of thermoregulation of PGE2 and its effect in carriers of the С allele 
rs689466 of the PTGS2 gene.
Note: T°C is body temperature, EP3 is prostaglandin E2 receptor, ↑ is a slight increase, ↑↑↑ is a 
strong increase      is the effect of cold on the body.
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effect of prostaglandin E2 on shivering 
thermogenesis under cold stress. We 
suggest that the increased transcrip-
tional activity of the PTGS2 gene in the 
rs689466 T allele may play a role in hu-
man adaptation to cold climates.

The work was carried out within the 
framework of the Yakutsk Scientific Cen-
ter for Complex Medical Problems "Study 
of the genetic structure and burden of he-
reditary pathology of populations of the 
Republic of Sakha (Yakutia)", the State 
Assignment of the Ministry of Science 
and Higher Education of the Russian 
Federation (FSRG-2023-0003).
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