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Introduction. The SARS-CoV-2 virus 
differs from other respiratory infections 
by its rather high virulence and mortality. 
Many researchers have found that se-
vere forms of the disease are more com-
mon in elderly people with concomitant 

diseases: diabetes mellitus, cardiovascu-
lar, etc. [4].

It has been established that free radi-
cal lipid oxidation plays an essential role 
in the pathogenesis of COVID-19 [1]. 
The SARS-CoV-2 virus initiates the pro-
duction of free radicals and inhibits an-
tioxidant protection by suppressing the 
expression of the transcription factor Nrf2 
(nuclear factor E2-related factor 2) [17]. 
Toxic products of lipid peroxidation are 
involved in damage to cells and tissues. 
Neutralization of toxic products of lipid 
peroxidation is carried out by the enzyme 
glutathione S-transferase, reducing the 
intensification of free radical oxidation of 
lipids [6,15]. 

Glutathione-S-transferases (GST; EC 
2.5.1.18) are a large and widespread 
family of enzymes that are divided into 
three main groups: cytosolic; mitochon-
drial; microsomal. In humans, GST en-
zymes are mainly represented by the 
cytosolic family. There are 7 classes of 
cytosolic GST enzymes (α, µ, π, θ, σ, ω, 
ζ), which include 17 isoforms of the en-
zyme, each encoded by a separate gene 
or a group of genes located on different 
chromosomes [2]. The enzymes encoded 
by the GSTM1 and GSTT1 genes are the 
most studied, well expressed in human 
lung tissues, their genes are located on 
chromosomes 1p13.3 and 22q11.23, re-
spectively [14]. A feature of these GSTM1 
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and GSTT1 genes is the presence of ex-
tended deletions in them, characterized 
by the absence of expression of the cor-
responding enzymes. Deletion polymor-
phisms of the GSTM1 and GSTT1 genes 
occur with high frequency in many human 
populations. Carriers of homozygous null 
deletion polymorphisms of the GSTM1 
and GSTT1 genes have an increased 
risk of developing multifactorial diseases 
associated with oxidative stress, includ-
ing respiratory, cardiovascular, oncologi-
cal and other diseases [7,18,20].

The aim of this work was to analyze 
the association of polymorphisms of the 
GSTM1 and GSTT1 genes with the de-
gree of lung damage in elderly people 
who have undergone COVID-19. 

Material and methods of research. 
A survey of 51 elderly volunteers aged 60 
to 75 years (average age: 64.470±0.602 
years) was conducted. All the examined 
patients had a coronavirus infection, were 
discharged from the hospital in the period 
from August to September 2020, the ex-
amination and collection of the material 
was carried out in March 2021. Informed 
consent to the study was obtained from 
all participants of the study (according to 
the protocol of the Ethics Committee of 
the YSC CMP No. 52 dated March 24, 
2021, decision 1).

Since coronavirus infection is asso-
ciated with the development of pneu-
monia in patients, the diagnosis of lung 
damage (inflammation) was assessed by 
the percentage of destruction of lung tis-
sue based on computed tomography. In 
our study, patients were divided into two 
groups: group 1 – patients with mild lung 
damage (CT1-2), group 2 – patients with 
severe lung damage (CT 3-4). Clinical in-
dicators during the disease, such as the 
degree of damage assessed on CT, were 
taken from a medical record statement. All 
participants were personally interviewed, 
filled out a series of questionnaires. The 
general characteristics of the exam-
ined patients are presented in Table 1.

For genotyping, DNA was isolated 
from whole blood by the standard two-
stage method of phenol-chloroform ex-
traction. DNA samples were sampled by 
deletion polymorphisms of the biotrans-
formation genes: GSTT1 and GSTM1, 
which encode the glutathione S-trans-
ferase enzymes θ1 and μ1, respectively. 
Identification of samples by GSTT1 and 
GSTM1 genes was carried out using 
polymerase chain reaction (PCR) ac-
cording to the method described in the 
work of Zehra et al. (2018). 

The results were visualized electro-
phoretically in 3% agarose gel, with the 
addition of ethidium bromide. The PCR 

results were viewed in transmitted UV 
light on a transilluminator. The presence 
of deletion polymorphisms of the GSTM1 
and GSTT1 genes was determined by 
the absence of the corresponding frag-
ments: 219 bp – for GSTM1 and 459 bp 
– for GSTT1. The presence of these frag-
ments indicates the presence of at least 
one normal (without deletion) copy of the 
genes. β-globulin with a fragment of 268 
bp was used as an internal control. Ev-
idence of successful PCR analysis was 
the presence of an amplification of 268 
bp, the β-globulin gene. 

Statistical processing was carried out 
using the software package SPSS 11.5 
for Windows and Microsoft Excel. The 
relationship between the degree of lung 
damage and genotypes in COVID-19 sur-
vivors was assessed by odds ratio (OR) 
with a 95% confidence interval (95% CI). 
Comparison of genotype frequencies in 
groups of sick and healthy individuals 

was carried out using the Fisher criterion. 
The differences were considered statisti-
cally significant at p <0.05.

Results. According to the data ob-
tained by us, 74.50% of all surveyed elder-
ly people suffered a coronavirus infection 
with a mild degree of lung damage, and 
25.49% with a severe degree (Table 1).

The distribution of deletion genotypes 
GSTM1 and GSTT1 in patients with mild 
and severe lung lesions is shown in Ta-
ble 2. The frequency of GSTM1-/- and 
GSTT1-/- genotypes (null genotypes) 
was higher among volunteers with se-
vere lung damage, compared with vol-
unteers with a milder degree (76.92% vs. 
55.26%; 69.23% vs. 44.73%, respective-
ly), but the differences did not reach sta-
tistical significance. 

Individuals who had COVID -19 with 
a combination of two null genotypes 
(GSTM1-/- / GSTT1-/-) showed a suffi-
ciently high risk of developing severe 

General characteristics of the examined patients who have had a coronavirus infection

Indicator: Values
Number of examined 51
Men / Women 59/102
Disease severity status (CT stage):
1-2 38 (74.50%)
Age, years: 63.947±0.673
3-4 13 (25.49%)
Age, years: 66.000±1.260

Table 1

The frequencies of GSTM1 and GSTT1 genotypes and their relationship with the degree 
of lung damage in elderly people who have had COVID-19

Genotypes Group n (%) p OR (95% CI)

GSTM1

М +/+ 1 17 (44.74)

0.20
2.69(0.63-11.38)

М +/+ 2 3 (23.08)
М -/- 1 21(55.26)

0.37(0.08-1.56)
М -/- 2 10(76.92)

GSTT1

Т +/+ 1 21 (55.26)

0.20
2.77(0.72-10.61)

Т +/+ 2 4 (30.77)
Т -/- 1 17 (44.73)

0.35(0.09-1.37)
Т -/- 2 9 (69.23)

GSTM1/GSTT1
М+/+/Т+/+ 1 9 (23.68)

0.70
1.70(0.31-9.17)

М+/+/Т+/+ 2 2 (15.38) 0.58(0.10-3.15)

GSTM1/GSTT1
М-/-/Т-/- 1 9 (23.68)

0.02
0.19(0.05-0.74)

М-/-/Т-/- 2 8 (61.54) 5.15(1.34-19.77)

GSTM1/GSTT1
М-/+/Т-/+ 1 12 (31.58)

0.47
2.53(0.48-13.27)

М-/+/Т-/+ 2 2 (15.38) 0.39(0.07-2.06)

GSTM1/GSTT1
М+/-/Т+/- 1 8 (21.05) 0.41 3.20(0.36-28.42)
М+/-/Т+/- 2 1 (7.69) 0.31(0.03-2.77)

Table 2
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lung damage by 5.15 times (61.54% vs. 
23.68%), which is evidence of a reliable 
association of a combination of null gen-
otypes with the development of more 
severe forms of lung damage in elderly 
people who had COVID-19 (p< 0.05).

Discussion. The pathogenesis of 
SARS-CoV-2 in COVID-19 disease is as-
sociated with the way the virus enters the 
human body. The SARS-CoV-2 virus en-
ters the cell by interacting with the protein 
receptor - ACE2 (angiotensin converting 
enzyme 2). SARS-CoV-2 blocks the work 
of the ACE2 protein, stimulates its inter-
nalization. The loss of ACE2 receptor ac-
tivity leads to a rapid drop in the produc-
tion of angiotensin-1–7 (Ang 1-7), and 
consequently the accumulation of angio-
tensin II (Ang II). Imbalance between an-
giotensin II (hyperactivity) and angioten-
sin 1-7 (deficiency) may play a role in the 
occurrence of an acute increase in blood 
pressure [12]. 

In addition, the accumulation of Ang II 
octapeptide leads to an increase in the 
expression of transcription nuclear fac-
tor-kB (NF-kB). The results obtained in 
the work of a group of researchers Blan-
co-MeloD, Nilsson-PayantBE, LiuWC, 
(2020) in vitro on a model of human bron-
chial epithelial cells are an indirect confir-
mation of the expression of NF-kB. The 
results showed that when cells are infect-
ed with the SARS-CoV-2 virus, overex-
pression of proteins is observed: CCL20, 
CXCL1, IL-1B, IL-6, CXCL3, CXCL5, 
CXCL6, CXCL2, CXCL16 and TNF. 
These proteins can lead to chemotaxis 
of neutrophils into virus-affected tissues 
(lung tissues) and a strong inflammato-
ry reaction. Neutrophils, in virus-infected 
tissues, intensively generate ROS, there-
by shifting the prooxidant-actioxidant 
equilibrium towards the intensification of 
free radical processes [9]. The shift of the 
pro-oxidant-antioxidant equilibrium to-
wards lipid peroxidation is evidenced by 
studies by other authors [10,13]. 

Authors Khomich O A, et.al . (2018) 
showed that a high level of ROS and a 
violation of the redox balance of the host 
is of great importance for the replication 
of viruses and the occurrence of the dis-
ease. Fuentes E, et.al. (2018) showed 
that the SARS-CoV-2 virus activates 
platelets [5]. Platelets, in turn, induce 
neutrophils to produce neutrophil extra-
cellular traps, which play a key role in the 
development of thrombotic complications 
leading to acute respiratory failure in lung 
tissues, lead to the development of hy-

poxia, which further initiates free radical 
oxidative processes [8]. 

Glutation-S transferase enzymes 
neutralize the products of free radical 
oxidation, thereby they are inhibitors of 
the development of oxidative stress. The 
presence of deletion polymorphisms in 
the GSTM1 and GSTT1 genes leads to a 
higher risk of initiation of free radical re-
actions and the development of oxidative 
stress. In turn, oxidative stress plays an 
important role in susceptibility to SARS-
CoV-2 infection and increases the risk of 
developing a large number of complica-
tions in COVID-19 [16]. 

Our study showed that patients car-
rying a combination of zero genotypes 
GSTM1-/- and GSTT1-/- who have had 
COVID-19 have a higher risk of devel-
oping severe lung lesions. In a study by 
Saadat (2020), it was shown that people 
with a zero genotype of the GSTT1 gene 
had a higher risk of COVID-19 infection 
compared to people without deletion 
polymorphism. 

The results of our study show that the 
combination of zero deletion genotypes 
GSTM1 and GSTT1 are a risk factor for 
the development of severe lung lesions in 
elderly people in Yakutia.
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