3' 2025

СЛУЧАЙ ИЗ ПРАКТИКИ

DOI 10.25789/YMJ.2025.91.31 УДК 616-036.17

Н.А. Чулакова, А.Ф. Потапов, К.В. Чулаков, Е.Е. Матвеева, И.А. Тримбач, А.А. Иванова

ИНТЕНСИВНАЯ ТЕРАПИЯ ТЯЖЕЛОЙ ЖИЗНЕУГРОЖАЮЩЕЙ ГИПОКАЛИЕМИИ

Описан случай тяжелой гипокалиемии (0,6 ммоль/л) с тяжелой вторичной гипокалиемической миоплегией, двусторонней симметричной кальцификацией в головном мозге у пациента с хроническим тубулоинтерстициальным нефритом.

Ключевые слова: гипокалиемия, гипокалиемическая миоплегия, синдром Гительмана, тубулопатия

A case report describes a severe hypokalemia (0,6 mmol/L) case with severe secondary hypokalemic generalized muscle weakness, bilateral symmetric calcification in the brain in the patients with chronic tubulointerstitial nephritis.

Keywords: Hypokalemia, hypokalemic myoplegia, Gitelman syndrome, tubular disorder

Для цитирования: Чулакова Н.А., Потапов А.Ф., Чулаков К.В., Матвеева Е.Е., Тримбач И.А., Иванова А.А. Интенсивная терапия тяжелой жизнеугрожающей гипокалиемии. Якутский медицинский журнал, 2025; 91(3): 145-150. https://doi.org/10.25789/YMJ.2025.91.31

Введение. Коррекция электролитных нарушений является одним из основных задач в повседневной практике врача анестезиолога-реаниматолога. Основные электролиты, требующие мониторинга при интенсивной терапии больного, находятся во внеклеточном (Na+, Ca2+, CI- и HCO3+) и внутриклеточном (K+, Mg2+, HPO3+, H2PO4+, S04+) водных секторах и определяют гомеостаз организма человека.

Калий – основной внутриклеточный катион, концентрация его в клетке составляет 120-150 ммоль/л, что составляет 98% всего калия в организме. Содержание калия в периферической крови значительно ниже и в норме на-

ЧУЛАКОВА Надежда Александровна - ассистент, ФГАОУ ВО «Северо-Восточный федеральный университет имени М.К. Аммосова» (677000, г. Якутск, ул. Ойунского, 27), врач анестезиолог-реаниматолог ГБУ РС (Я) «Якутская республиканская клиническая больница» (677000, г.Якутск, ул. Стадухина 81/3), ORCID: 0009-0001-5356-2950, chulakovan@list.ru; ПОТА-ПОВ Александр Филиппович – д.м.н., проф., ФГАОУ ВО «Северо-Восточный федеральный университет имени М.К. Аммосова», врач анестезиолог-реаниматолог ГБУ РС (Я) «Якутская республиканская клиническая больница», ORCID: 0000-0003-2087-543X, potapov-paf@

ГБУ РС(Я) «Якутская республиканская клиническая больница»: ЧУЛАКОВ Кирилл Викторович - зав. отделением, ORCID: 0009-0001-6781-9550, wor1d@rambler.ru; МАТВЕЕВА Екатерина Евгеньевна – врач анестезиолог-реаниматолог, katya.eryomenko.92@mail.ru; ТРИМБАЧ Иван Анатольевич - врач анестезиолог-реаниматолог, trimbach747@gmail.com.

ИВАНОВА Альбина Аммосовна - д.м.н., доцент, зав. кафедрой, ФГАОУ ВО «Северо-Восточный федеральный университет имени М.К. ORCID: 0000-0002-3782-6864, Аммосова», iaa 60@mail.ru;

ходится в пределах 3,5-5,5 ммоль/л [9]. Содержание калия и его транспорт между клеткой и интерстицием зависит от питания человека, функции почек, приема лекарственных препаратов и работы эндокринной системы (концентрации альдостерона и инсулина) [16]. Баланс калия в организме человека, поддержание его в пределах узкого диапазона осуществляется двумя механизмами: первый регулирует его выделение через почки и кишечник, второй поддерживает разницу концентраций во внутри- и внеклеточном пространствах.

В клинической практике наиболее распространенным электролитным нарушением является гипокалиемия - снижение содержания калия в плазме крови ниже 3,5 ммоль/л. Снижение калия ниже 3.0 ммоль/л считается гипокалиемией тяжелой степени, а значения ниже 2,5 ммоль/л является показанием к госпитализации пациента и его незамедлительной коррекции в условиях стационара. Низкий уровень калия увеличивает возбудимость мембран кардиомиоцитов, что приводит к увеличению сердечного автоматизма и задержке желудочковой реполяризации, ведущей к фатальным аритмиям [8].

В данном исследовании представлен клинический случай гипокалиемии, когда минимальное значение калия крови больного составило 0,6 ммоль/л.

Клинический случай. Пациент 26 лет поступил в 2024 г. в Государственное бюджетное учреждение Республики Саха (Якутия) «Якутская республиканская клиническая больница» («ЯРКБ») с клиническим основным диагнозом: Хронический тубулоинтер-

стициальный нефрит неуточненный. ХБП 2 стадии, СКФ 85,6 мл/мин/1,73 м². Тубулярная недостаточность тяжелой степени тяжести. Не исключается сольтеряющая почка (синдром Барттера? Гительмана? Фанкони?). Острое повреждение почек. Состояние после заместительной почечной терапии (гемодиализ) №5 (от 2022 г.). Осложнения основного диагноза: Вторичный гиперальдостеронизм. Электролитные нарушения тяжелой степени тяжести. Вторичная энтеропатия. Поздняя госпитализация. Вторичный иммунодефицит. Пневмония средней степени тяжести в стадии разрешения. Дисметаболическая энцефалопатия тяжелой степени тяжести с полным восстановлением. Токсический гепатит легкой степени тяжести в стадии разрешения. Сопутствующий диагноз: Эритематозная гастропатия. Двухсторонний верхнечелюстной синусит справа в стадии экссудации. Гипоплазия щитовидной железы. Эутиреоз. Резидуальная энцефалопатия. Ангиоретинопатия по ишемическому типу OU.

Жалобы при поступлении: слабость, сухость во рту, жажда, отсутствие аппетита, мышечные боли, снижение количества мочи и отсутствие стула более 5-7 дней.

Анамнез заболевания. Со слов пациента, ухудшение состояния отмечает в течение 2 месяцев, когда перестал принимать рекомендованный ранее препарат калия (300 мг в сутки per os). Отмечались тошнота, рвота и жидкий стул, повышение температуры до 38°C, по поводу чего лечился амбулаторно. Обратился за медицинской помощью в Республиканскую больницу №2 – Центр экстренной медицинской помощи (РБ №2-ЦЭМП), только спустя

2 месяца от начала заболевания, когда появились «тянущие боли» в нижних конечностях, уменьшение количества мочи и потеря веса более 5 кг. После обследования в условиях приемного отделения пациент направлен в терапевтическое отделение ЯРКБ и по тяжести состояния госпитализирован в отделение анестезиологии, реанимации и интенсивной терапии (ОАРИТ).

Анамнез жизни. Со слов больного, рос и развивался без особенностей. Образование – среднее-специальное,

работает поваром. Семейное положение – женат. Наследственность, со слов пациента, не отягощена.

Наблюдается у врача-нефролога с 2022 г. с диагнозом: N12. Тубулоинтерстициальный нефрит, неуточненный как острый или хронический. В период 2022-2024 гг. неоднократно проходил обследование и лечение в стационарах г. Якутска, включая заместительную почечную терапию (гемодиализ). В июле 2023 г. проходил лечение в условиях ОАРИТ РБ №2-

ЦЭМП по поводу гипокалиемии до 0,7 ммоль/л. Для уточнения диагноза в 2023 г. проводилась телемедицинская консультация с Федеральным государственным бюджетным учреждением «Национальный медицинский исследовательский центр эндокринологии» Минздрава РФ, в ходе которой было рекомендовано обследование для исключения наследственных тубулопатий. В 2024 г. проходил обследование у врача-эндокринолога и врача-генетика в Республикан-

Таблица 1

Динамика клинико-лабораторных показателей и методы лечения в ОАРИТ

Показатели	При поступлении	1 сутки	2 сутки	3 сутки	4 сутки	5 сутки	6 сутки	11 сутки
pH [7,320-7,420]	7,428	7,416	7,311	7,435	7,369	7,476	7,418	7,358
Натрий, ммоль/л [135,0-145,0]	120,0	125,0	136,0	140,0	141,0	140,0	146,0	135,0
Калий, ммоль/л [3,7-5,3]	0,9	0,6	1,2	2,9	2,7	4,3	2,4	2,6
Кальций, ммоль/л [1,15-1,29]	1,08	1,05	1,19	0,85	1,10	1,19	1,92	1,17
Лактат, ммоль/л [0,5-1,6]	1,9	2,1	2,6	2,0	3,1	1,0	1,3	2,7
Лейкоциты, $10^9/\pi$ [4,00-9,50]	21,08	17,55	25,75	28,85	19,79	14,68	10,59	7,36
Нейтрофилы, % [37,0-72,0]	87,0	81,3	96,2	86,9	85,3	83,8	76,5	70,9
Лимфоциты, % [20,0-40,0]	8,3	13,6	1,4	7,7	8,5	10,0	15,5	23,1
Креатинин, мкмоль/л [62,0-106,0]	139,1	169,0	135,0	148,0	151,0	132,0	148,0	92,0
СКФ (СКD-ЕРІ) мл/мин/1,73м ²	68	53	71	63	61	73	63	115
ЛДГ Ед/л [135,0-225,0]	225,2	238,0	210,0	331,0	368,0	661,0	586,9	413,0
СРБ, мг/л [0-5,0]	49,66	62,4	29,5	102,1	179,2	232,3	175,53	8,4
ПКТ нг/мл	0,5	-	2,0	10,0	2,0	0,5	Отр	отр
Диурез, мл/кг/час (общий объем, мл)	3,9 (800 мл)	5,6 (6800 мл)	2,8 (3400 мл)	1,4 (1700 мл)	3,1 (3800 мл)	3,3 (4100 мл)	4,0 (4900 мл)	2,4 (2900 мл)
ЖКТ	П	Парез кишечника			Стул	-	Стул	-
Объем инфузионной терапии, мл	1470	7510	5360	3360	2720	2360	2360	1780
Инфузия 4% раствора КСl, мл (ммоль/л)	450 мл (241,2)	450 мл (241,2)	450 мл (241,2)	140мл (75,0)	140мл (75,0)	80мл (42,9)	140 мл (75,0)	Per os 300 мг в сутки
Респираторная поддержка		Инвазивная ИВЛ				Биназальный катетер 5л/мин		-
Инфузия Норадреналина, мкг/кг/мин	-	0,2	1,2	0,5	0,5	0,4	0,2/-	-
ГДФ, ч	-	-	№1 12 ч	№2 12 ч	№3 10 ч	-	№4 10 ч	-

Примечание. СКФ – скорость клубочковой фильтрации, СКD-EPI – Chronic Kidney Disease Epidemiology Collaboration Formula, ЛДГ – лактатдегидрогеназа, СРБ – С-реактивный белок, ЖКТ-желудочно-кишечный тракт, ГДФ – гемодиафильтрация, ИВЛ – искусственная вентиляция легких.

ской больнице №1-Национальный центр медицины им. М.Е. Николаева (РБ №1-НЦМ), где по результатам лабораторных данных были выявлены гипокалиемия (2,36 ммоль/л), гипомагнезиемия (0,69 ммоль/л), гиперкальциемия (2,51 ммоль/л), гипокальциурия (0,78 ммоль/л), гиперренинемия (166,2 пг/мл), гиперальдостеронизм (761,8 пг/ мл). Пациенту было рекомендовано генетическое исследование по профилю «Тубулопатии». Рекомендуемые обследования пациент не проходил по семейным обстоятельствам.

Состояние при поступлении в ОА-РИТ тяжелое, обусловлено водноэлектролитными нарушениями (тяжелая гипокалиемия, гиповолемическая гипонатриемия), сепсисом, гипокалиемической миоплегией с парезом кишечника.

Рост - 160 см, вес - 51 кг, индекс массы тела - 19.9 кг/м². Оценка тяжести по шкалам APACHE II-16 баллов, SOFA-2 балла. СКФ (СКD-EPI) – 68 мл/ мин/1.73м².

Сознание ясное (15 баллов по шкале ком Глазго), адинамичен. Кожные покровы и видимые слизистые обычной окраски, влажные. Дыхание самостоятельное, ровное, при аускультации проводится по всем полям, жесткое, хрипы не выслушиваются. Гемодинамика: АД 106/63 мм рт.ст., ЧСС-62 в минуту. Язык сухой, с белым налетом. Живот втянут, перистальтика выслушивается, вялая. Мочеиспускание самостоятельное, установлен мочевой катетер, по которому выделяется моча соломенно-желтого цвета. Периферических отеков нет.

При поступлении в ЯРКБ в результате лабораторных (клинические и биохимические анализы крови и мочи) и инструментальных исследований (компьютерные томография (КТ) органов грудной клетки (ОГК) и органов брюшной полости (ОБП), ультразвуковое исследование ОБП. ЭКГ. эхокардиография) выявлены низкий уровень в плазме крови калия (0,9 ммоль/л), натрия (120 ммоль/л), признаки двусторонней нефропатии, диффузные изменения обеих почек с признаками гипотрофии коркового слоя, округлое гиподенсивное образование средней трети правой почки, признаки утолщения стенки мочевого пузыря и слизистой оболочки толстого кишечника. На ЭКГ – синусовый ритм с частотой сердечных сокращений 68 уд/мин, неполная АВ блокада I степени, усилены потенциалы правого желудочка, диффузные изменения миокарда, более выраженные по передней стенке, блокированные предсердные экстрасистопии

Основные клинико-лабораторные показатели пациента при поступлении в ОАРИТ и в динамике, а также проведенные методы лечения представлены в табл. 1, показатели гемодинамики на рис. 1.

В период лечения больного в ОА-РИТ не было возможности лабораторного определения уровня магния в крови. Однако, учитывая клинико-лабораторную картину и гипомагнеземию в анамнезе, пациенту превентивно назначался препарат магния (Магния сульфат 25% 10 мл 2 раза в сутки).

Комплекс интенсивной терапии в ОАРИТ включал инфузию кристаллоидов с дополнительной микроструйной

инфузией 4% КСІ, респираторную, вазопрессорную, гастропротективную, антикоагулянтную терапию, энтеральную нутриционную поддержку поддержку и смптоматическое лечение. Учитывая выраженный лейкоцитоз (21,08*10⁹/л) были назначены антибиотики (табл.1).

Учитывая выраженную гипокалиемию в течение длительного времени (по данным анамнеза два последних месяца), ее коррекция не носила «агрессивный» характер и проводилась путем микроструйной инфузии в первые дни в дозе 240 ммоль.

Несмотря на начатую терапию, в первые сутки госпитализации стали нарастать мышечная слабость и острая дыхательная недостаточность

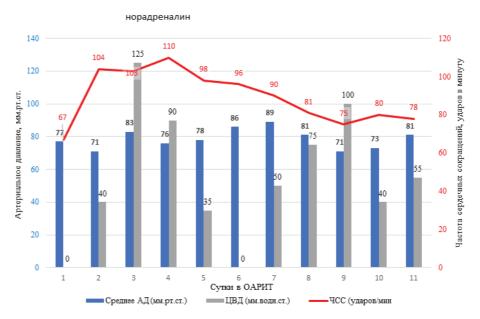


Рис. 1. Основные показатели гемодинамики. Красная стрелка – инфузия вазопрессора (норадреналин)

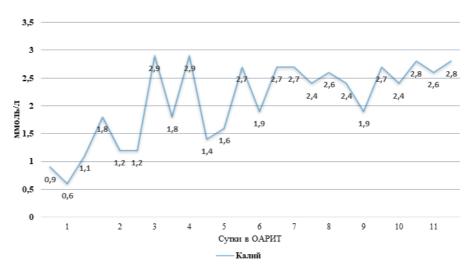


Рис. 2. Динамика уровня калия венозной крови. Синие стрелки – сеансы гемодиафильтрации

(ОДН), что послужило показанием к интубации трахеи и началу инвазивной искусственной вентиляции легких (ИВЛ). В связи с артериальной гипотензией потребовалось подключение вазопрессора — внутривенно микроструйно назначен норадреналин в дозировке 0,2-1,2 мкг/кг/мин для поддержания среднего АД на уровне 95 мм.рт. ст. Вазопрессорная терапия была прекращена на 6-е сутки при стабилизации гемодинамики (систолическое АД выше 100 мм рт.ст.).

Для коррекции нарушений водноэлектролитного обмена и в связи с признаками системной воспалительной реакции было принято решение о проведении эфферентного метода лечения — непрерывной вено-венозной гемодиафильтрации (ГДФ). Динамика уровня калия в плазме крови на фоне проводимой терапии представлена на рис. 2.

На фоне проводимой интенсивной терапии отмечена положительная клинико-лабораторная динамика, восстановление мышечного тонуса, адекватного спонтанного дыхания и перистальтики кишечника. На 4-е сутки, пациент был отлучен от ИВЛ и экстубирован. Через 11 суток интенсивной терапии в условиях ОАРИТ пациент с уровнем калия 2,6 ммоль/л был переведен для дальнейшего лечения в профильное отделение.

В ОАРИТ, наряду с интенсивной терапией, для уточнения диагноза проводились дополнительные исследования: определены уровень кортизола крови (утро) - 1190,69 нмоль/л (N=166-507 нмоль/л (утро)), тиреотропного гормона - 1,22 мкМЕ/мл (N=0,40-4,00 мкМЕ/мл), кальция в моче - 0,73 ммоль/л (N=2,5-7,5 ммоль/л), магния крови 0,89 ммоль/л (N=0,73-1,06 ммоль/л). Вторичный альдостеронизм был подтвержден следующими анализами: ренин (лежа) 166,20 мкМЕ/мл (N=4,40-46,10 мкМЕ/мл), альдостерон (лежа) 761,90 пг/мл (N=30,00-172,00 пг/мл).

Исключен онкологический генез гипокалиемии — раковый эмбриональный антиген — 2,5 нг/мл (N менее 5 нг/мл), CA-15-3 — 6,9 Ед/мл (N=0-25 ЕД/мл), альфа-фетопротеин — 4,4 нг/мл (N=0-8 нг/мл).

Исключен ряд аутоиммунных заболеваний (склеродермия, аутоиммунные системные васкулиты, IgAнефропатия, аутоиммунный гепатит, болезнь Крона, системная красная волчанка и др.): антинейтрофильные антитела (ANCA), антинуклераные антитела (ANA) — отрицательные, антитела к ДНК нативной — 11 МЕ/мл (N=0-20), антитела к циклическому цитрулиновому пептиду (анти-СРР) — 9,4 Ед/мл (N=0-20), антитела к миелопероксидазе — 2,2 Ед/мл (N=0-20), антитела к нуклеосомам — 10 Ед/мл (N=0-20), аутоантитела класса IgG к антигену Sci-70 — 6 Ел/мл (N=0-15), антинуклеарные антитела к Sm-антигену — 3,2 МЕ/мл (N=0-15), антитела к антигенам митохондрий — 7,7 (N=<10 МЕ/мл). Исключена глютеновая энтеропатия — антитела к глиадину IgG - 9,291 Ед/мл (N=0-25), IgA - 9,426 Ед/мл (N=0-25).

На КТ головного мозга выявлена симметричная кальцификация в подкорковых структурах (хвостатого ядра, скорлупы, бледного шара, внутренней капсулы), участки кальцификации в субкортикальном белом веществе средней лобной извилины обеих полушарий, в проекции шишковидной железы, затылочных рогах, в обеих полушариях мозжечка (рис. 3).

Таким образом, дифференциальная диагностика и лечение гипокалиемии остаются сложной задачей. Это обусловлено множеством заболеваний и острых состояний, которые сопровождаются гипокалиемией (рис. 4) [9, 16].

В представленном клиническом случае, среди указанных выше причин гипокалиемии, наиболее вероятным считаем наличие у больного синдро-



Рис. 3. Двусторонняя симметричная кальцификация в подкорковых структурах и субкортикальных отделах средних лобных извилин

ма Гительмана (СГ) — аутосомно-рецессивного заболевания почечных канальцев, обусловленного дефектом гена SLC12A3, который кодирует тиазид-чувствительный транспортер — NCCT в дистальном извитом канальце и приводит к снижению реабсорбции натрия, калия и хлора. Характерная для данного синдрома гипомагнеземия возникает из-за снижения активности TRPM6 (transient receptor potential cation channel subfamily M member 6) [5, 13].

В настоящее время распространенность СГ неизвестна, в среднем,

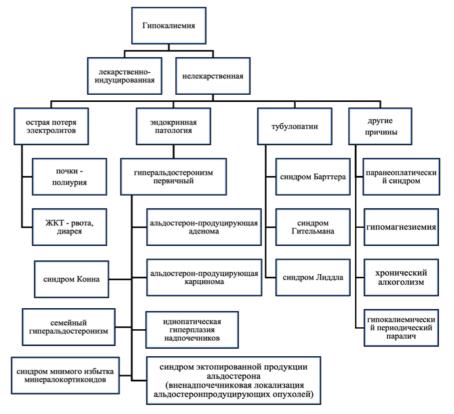


Рис. 4. Диаграмма этиологии гипокалиемии

Таблица 2

Симптоматика синдрома Гительмана

	Проявления		
Сердечно-сосудистая система	ЭКГ – псевдоишемические проявления, удлинение QT (с развитием пароксизмальных желудочковых аритмий и внезапной смерти) [1] Склонность к гипотонии или нормальному АД [11]		
Нервная система	Утомляемость Парестезии Депрессии Спазмы в конечностях (тетания) Двусторонняя кальцификация в головном мозге [6]		
Мышечная система	Миоплегия различной степени тяжести [10] Риск развития миопатии и рабдомиолиза при назначении статинов		
Электролитные нарушения	Гипокалиемия Гипомагнеземия Гиперкальциемия		
Эндокринная система	Альдостеронизм Гиперренинемия Дефицит массы тела		
Кожа	Дерматит		
Костная система	Остеопороз Хондрокальциноз (пирофосфатная артропатия) [2 Артралгии [4]		
Глаза	Склерохориоидальные кальцификации [13, 14]		
Почки	Прогрессирующий тубулоинтерстициальный нефри (до ТХПН) ОПП (при рабдомиолизе)		
жкт	Парез кишечника (запоры, динамическая острая кишечная непроходимость) [4]		

указываются данные о 25 случаях на 1 млн. населения [3, 15]. Для СГ характерны гиперальдостеронизм, гиперренинемия на фоне нормального или сниженного артериального давления [10], повышение экскреции калия и магния с мочой, а также снижение кальциурии (менее 2,0 ммоль/л) [5]. Последнее является важным звеном дифференциальной диагностики пользу СГ. Точный механизм гипокальциурии не известен, предполагается повышение пассивной реабсорбции кальция, нарушение входа натрия с последующим вовлечением кальциевых каналов, либо нарушение работы Na/ Са-обменника [3]. Гиперкальциемия приводит к прогрессирующей кальци-

фикации, описаны случаи с прогрессирующей двусторонней кальцификацией в головном мозге [6], хондрокальциноз [2, 13], склерохориоидальные кальцификации [13, 14]. Диагноз СГ подтверждается генетическим исследованием мутации гена SLC12A3. Симптомы синдрома Гительмана у взрослых пациентов по данным научных публикаций отражены в табл. 2.

Добавим, что кроме СГ проводилась дифференциальная диагностика с синдромом Барттера и первичным гиперальдостеронизмом, основные клинические проявления которых представлены в табл. 3. Синдром Барттера, в отличие от СГ, характеризуется выраженной полирурией, гипокальциемией и неспецифичностью изменений АД. При первичном гиперальдостеронизме избыточная продукция альдостерона автономна или относительно автономна от ренин-ангиотензиновой системы и главным клиническим признаком является синдром артериальной гипертензии с изменением сосудов глазного дна и головными болями [7,12]. Также для первичного гиперальдостеронизма характерны наличие макро- и микроаденомы надпочечников, утолщения ножек надпочечников, гиперплазии, изменения анатомии вен и другие специфичные изменения, выявляемые при топической диагностике (ультразвуковое исследование, компьютерная и магнитно-резонансная томография, сцинтиграфия надпочечников с 131-I-холестерином, флебография надпочечников с селективным забором крови).

Заключение. Таким образом, дифференциальная диагностика причины тяжелой гипокалиемии представляет сложную задачу в клинической практи-

Таблица 3

Дифференциальная диагностика наследственных тубулопатий – синдрома Барттера и синдрома Гительмана с первичным гиперальдостерронизмом

	Синдром Барттера	Синдром Гительмана	Первичный гиперальдостеронизм	
Начальные проявления	Раннее детство, антенальный период	6-13 лет	В любом, чаще 30-40 лет	
Полиурия	Выраженная полиурия/полидипсия	Нет	Полиурия/полидипсия Никтурия	
Лабораторные показатели	Гипокалиемия Гипокальциемия Нормальный уровень магния	Гипокалиемия Гиперкальциемия Гипомагнезиемия Повышение ренина Повышение альдостерона	Гипокалиемия Повышение альдостерона Низкий уровень ренина	
Экскреция кальция	Высокая	Низкая	Нормальная	
Отложение кальция	Нефрокальциноз	Внепочечное	Нет	
Уровень АД	Не специфично	Низкое	Устойчивое повышение	

ке. Заболеваний и острых состояний, где гипокалиемия является одним из ведущих синдромов, достаточно много, что требует от врача обширных знаний и опыта. Безусловно, в случаях «трудного диагноза» существенную роль играет диагностический потенциал медицинской организации, наличие современной лабораторной службы и отделения компьютерной диагностики с большим спектром исследований. Не менее трудной является и сама коррекция тяжелой гипокалиемии. В большинстве случаев обычное введение раствора калия не приводит к успеху вследствие выраженного водно-электролитного дисбаланса, а также сохранения причин, которые его поддерживают. Тактика ведения больного с тяжелой гипокалиемией требует мультидисциплинарного подхода и соблюдения принципов преемственности на всех этапах лечения больного. Улучшение результатов лечения тяжелой гипокалиемии невозможно без выяснения основной причины ее развития, своевременного и адекватного лечения с применением современных методов интенсивной терапии.

Авторы заявляют об отсутствии конфликта интересов.

Литература

1. Гринштейн Ю.И., Шабалин В.В. Клинический случай синдрома Гительмана с тяжелой гипокалиемией и псевдоишемическими ЭКГизмененями // Международный журнал сердца и сосудистых заболеваний. 2016; 4 (9): 48-53. DOI: 10.24412/2311-1623-2016-9-48-53.

Grinstein Yu.I., Shabalin V.V. A case of Gitelman's syndrome with severe hypokalemia and pseudoischemic ECG changes. International Heart and Vascular Disease Journal. 2016; 4 (9): 48-53. DOI: 10.24412/2311-1623-2016-9-48-53.

2. Зверев Я.Ф., Брюханов В.М., Рыкунова А.Я. Роль почек в поддержании кальциевого и магниевого гомеостаза и при его нарушениях (Часть II) // Нефрология и диализ. 2018; 20 (2): 170-188. DOI: 10.28996/2618-9801-2018-2-170-188.

Zverev J.F., Bryukhanov V.M., Rykunova A.Ya. Role of kidney in maintaining calcium and magnesium homeostasis and its disorders (Part

- II). Nephrology and Dialysis. 2018; 20(2); 170-188. DOI: 10.28996/2618-9801-2018-2-170-188.
- 3. Каюков И.Г. Редкие заболевания в практике "взрослого" нефролога: состояния, ассоциированные с гипокапиемией. Сообщение III. Синдромы Барттера и Гительмана / И. Г. Каюков, А. В. Смирнов, М. А. Шабунин [и др.] // Нефрология. 2009; Т. 13, № 4: 86-102. DOI: 10.24884/1561-6274-2009-13-4-86-102.

Kayukov I.G. Rare diseases in practice of «adult» nephrologist: conditions associated with hypokalaemia. Communication III. Bartter and Gitelman syndromes. / I.G. Kayukov, A.V. Smirnov, M.A. Shabunin et al. // Nephrology (Saint-Petersburg). 2009; 13(4): 86-102. DOI: 10.24884/1561-6274-2009-13-4-86-102.

4. Кошурникова А.Н., Сощенко А.Е. Синдром Гительмана: клиническое наблюдение // Вестник Челябинской областной клинической больницы. 2014; 3(26): 83-84.

Koshurnikova A.N., Soshenko A.E. Gitelman's syndrome: a clinical observation // Chelyabinsk Regional Clinical Hospital Bulletin. 2014; 3(26): 83-83

5. Лаврищева Ю.В., Яковенко А.А. Наследственные тубулопатии в практике "варослого" нефролога. Клинический случай // Трансляционная медицина. 2019; 6(4): 35-41. DOI: 10.18705/2311-4495-2019-6-4-35-41.

Lavrishcheva Yu.V., Yakovenko A.A. Hereditary tubulopathy in the practice of adult nephrology. Case report // Translational Medicine. 2019; 6(4): 35-41. DOI: 10.18705/2311-4495-2019-6-4-35-41.

6. Левиашвили Ж.Г. Атипичная форма синдрома Гительмана с церебральными кальцификатами / Ж.Г. Левиашвили, Н.Д. Савенкова, В.И. Гузева [и др.] // Российский вестник перинатологии и педиатрии. 2018; 63(1): 90-95. DOI: 10.21508/1027-4065-2018-63-1-90-95.

Leviashvili J.G.The atypical form of Gitelman syndrome with cerebral calcifications /Leviashvili J.G., Savenkova N.D., Guzeva V.I., Anichkova I.V., Suspitsin E.N.// Russian Bulletin of Perinatology and Pediatrics). 2018; 63(1): 90-95. DOI:10.21508/1027-4065-2018-63-1-90-95.

7. Мельниченко Г.А. Первичный гиперальдостеронизм: диагностика и лечение. Новый взгляд на проблему. По материалам Проекта клинических рекомендаций Российской ассоциации эндокринологов по диагностике и лечению первичного гиперальдостеронизма / Г.А. Мельниченко, Н.М. Платонова, Д.Г. Бельцевич [и др.] // Consilium Medicum. 2017; 19(4): 75-85.

Melnichenko G.A. Primary hyperaldosteronism: diagnosis and treatment. A new look at the problem. According to the materials of the russian association of endocrinologists clinical guidelines for primary hyperaldosteronism diagnosis and treatment / Melnichenko G.A., Platonova N.M., Beltsevich D.G et al. // Consilium Medicum. 2017;19 (4): 75–85.

8. Осадчий О.Е. Гипокалиемия — клиническое значение и роль в механизмах аритмогенеза сердца. Кубанский научный медицинский вестник. 2019; 26 (4): 94-106. DOI: 10.25207/1608-6228-2019-26-4-94-106.

Osadchii O.E. Hypokalaemia: Clinical Significance and Role in the Mechanisms Underlying Cardiac Arrhythmogenesis // Kuban Scientific Medical Bulletin. 2019; 26(4): 94-106. DOI: 10.25207/1608-6228-2019-26-4-94-106.

9. Савин И.А., Горячев А.С. Водно-электролитные нарушения в нейрореанимации. Издание второе, Москва. 2016.

Savin I.A., Goryachev A.S. Water and electrolyte disorders in neurocritical care. Edition two, Moscow. 2016.

10. Саковец Т.Г., Богданов Э.И. Вторичные гипокалиемические миоплегии // Неврология, нейропсихиатрия, психосоматика. 2019; 11(3): 52-56. DOI: 10.14412/2074-2711-2019-3-52-56.

Sakovets T.G., Bogdanov E.I. Secondary hypokalemic myoplegias. Neurology, Neuropsychiatry, Psychosomatics. 2019; 11(3): 52-56. DOI: 10.14412/2074-2711-2019-3-52-56.

11. Чихладзе Н.М. Артериальная гипотония у больных с вторичным гиперальдостеронизмом: синдромы Барттера и Гительмана // Системные гипертензии. 2008; 3: 24-26.

Chikhladze N.M. Arterial hypotension in patients with secondary hyperaldosteronism: Bartler and Gitelman syndromes. // Systemic Hypertension. 2008; 3: 24-26.

12. Шурыгина В.Д. Диагностика первичного гиперальдостеронизма и алгоритм взаимодействия кардиолога и эндокринолога с позиции кардиолога // Вестник Санкт-Петербургского университета. Медицина. 2023; 18 (3): 214-232. DOI: 10.21638/spbu11.2023.301.

Shurygina V.D diagnosis of primary aldosteronism and the algorithm of interaction between a cardiologist and an endocrinologist from the position of a cardiologist // Vestnik of Saint Petersburg University. Medicine. 2023; 18 (3): 214-232. DOI: 10.21638/spbu11.2023.301.

- 13. Blanchard A., Bockenhauer D, Bolignano D, et al. Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. *Kidney international*. 2017. 91(1). P.24–33. DOI: 10.1016/j.kint.2016.09.046.
- 14. Ham Y, Mack H, Colville D, et al. Gitelman syndrome and ectopic calcification in the retina and joints. *Clin Kidney J.* 2021. 14(9). P.2023-2028. DOI: 10.1093/ckj/sfab034.
- 15. Jiang R, Liu Q, Sun Y, et al. Finerenone as a Novel Treatment for Gitelman Syndrome: A Case Study of a 35-Year-Old Male with Adrenal Mass and Hypokalemia. *Am J Case Rep.* 2024. 25 (e944492). DOI: 10.12659/AJCR.944492.

16. Louis Vincent, Frederick A. Moore, Rinal-do Bellomo, John J. Marini. Textbook of Critical Care. 8th Edition. 2022.