

KrivoshapkinaZ.N., EgorovaA.G., GorohovaZ.N., SemenovE.I., LDOlesova

Relationship of Psycho-Emotional Stateand Bad Habits with an Expression of Dyslipidemiain the Yakutia Working Population

ABSTRACT

Medico-social, psychodiagnostic and biochemical studies of the working population of Yakutia were carried out. The survey covered bothrural (indigenous population) and urban residents (non-indigenous population). Analysis of lipid metabolism disorders in the population of Yakutia

revealed that one of the reasons expressed by deviations from the normal values of lipid metabolism in the indigenous population is smoking and alcohol consumption, possibly due to the low standard of living.

Keywords: low standard of living, personal anxiety, depression, alcohol, smoking, dyslipidemia.

INTRODUCTION

Under modern conditionshigh incidence rate of the population of Yakutianot only depends on a range of adverse factors relating to climatic conditions of living, but it is possibly subjected to socio-economic changes for the last years as well[1]. The medical and social research conducted in Yakutia has shown that high levels of trait anxiety residents, first of all are associated with low levels of life [4,5,6].

In the meantimea state of prolongedemotional tensionis one of the reasons for failure of adaptive reactions of an organism[3,11], and one of the degradation factors of reservecapacity of the organism adaptation is lipid metabolic imbalance[12,13]. Also aggravating factors in the development of atherosclerotic vascular changes are bad habits like smoking and drinking alcohol.

Accordingly, the study of relationship of addictions and anxiety-depressive disorders with lipid metabolism of blood serum at new arrivers and indigenous population of Yakutia is of great significance.

The aim of this study was to identify association between serum lipid metabolism with quality of life, anxiety-depressive disorders and addictions (alcohol, smoking) in the working population of Yakutia.

MATERIALS AND METHODS

Infield conditionswe conductedmedico-social, psycho diagnosticandbiochemical studiesof the population of working age(16 to60 years)living inrural and urban areasof the Republic ofSakha (Yakutia). The studyincluded214people livingin rural areas,and228employees of an industrial sector, living inurban areas. The ethnic composition of the population surveyedwere as follows:100% of the indigenous population among villagers, 97% new arrivers among urban population.

The social and hygienicmethodof analysis (a survey questionnaire)studied conditions and a way of life of the workforce. The questionnaire, developed by the ILCYSCSB RAMS, included 32 questions. Psycho-emotional state of the population has been studied using standardized methods: Beck Depression Inventory questionnaire, the scale of self-esteem level of personal anxiety BHS piel berger-JLH anina.

Laboratory studies were carried out under conditions of constant internal and external quality control (FSEQC). Determination of the levels of total cholesterol (TC), HDL cholesterol (HDL cholesterol), triglycerides

(TG) were performed by enzymatic method for the automatic biochemical analyzer «Cobas Mira Plus» company «La Roche» (Switzerland) using reagents «Biocon» (Germany). LDL (low density lipoprotein cholesterol) and VLDL (cholesterol VLDL) was calculated by the formula Friedewald et al. [15]. Atherogenic factor calculated by the formula proposed by AN Klimov [8]: Ka = (cholesterol - HDL cholesterol) / HDL-C.

Forhypercholesterolemiaacceptedlevel oftotal cholesterol \geq 5,0mmol / l, increased LDL-C \geq 3,0mmol / l, decreased HDL cholesterol levels \leq 1,0mmol /l in menandHDL cholesterol \leq 1,2in women.HypertriglyceridemiaattributedTG \geq 1,7mmol/ l.

Statistical data processing was performed using statistical software application package SPSS for Windows 17.0. Standard methods of variation statistics: Calculation of mean values, standard deviations, 95% confidence interval. Data in tables are presented as $M \pm m$, where M - average, m - SEM. The significance of differences between mean values was assessed using Student's t test and the Kolmogorov-Smirnov test. The probability of the null hypothesis is accepted at p < 0.05. Correlation analysis was performed by the method of Pearson and Spearman.

RESULTS AND DISCUSSION

Comparative analysis of lipid metabolism revealed that urban residents showed significant increase in triglycerides (TG), total cholesterol (TC), anti-atherogenic fraction of high density lipoprotein cholesterol (HDL-C) compared to the rural population with significant increase in the atherogenic lipoprotein fractions low density (LDL). As a result of violation of the ratio of atherogenic and anti-atherogenic cholesterol fractions among rural inhabitants atherogeneity coefficient exceeded admissible norms, and was significantly higher than their urban counterparts (Table. 1).

The frequency of dyslipidemia among indigenous people, adapted to the conditions at high latitudes, indicating exhaustion of functional reserves of the bodyin which the defense mechanisms and adaptive changes in the body an give abreak down - disadaptative [3, 9, 10, 14].

In urban areas,91% of the respondents live in comfortable homes, while in rural areas-only 2%. The remaining 68% of the villagers live in houses with no amenities (with oven heating), 30% - with partial conveniences (central heating). Questioning revealed that their living conditions in rural areas are not satisfied with more than half of respondents (53%), in the city -9%. The causes of dissatisfaction with living conditions, according to respondents, are as follows: the lack of basic facilities, lack of living space and dilapidated housing.

58% of respondentsfeelthe villagershad significantfinancial difficulties on their own assessment. At the same time 12% of respondents have shortage for food, 46% being with insufficient set of food, and only 4% of the population do not experience financial problems. The remaining 38% is enough money topurchase food and essential commodities. Among those working in the industry 44% live in abundance, the remaining 56% classified themselves as people of moderate means.

Analysis ofpsycho-diagnosticstudiesshowed that the levelof personal anxiety(RT)among the surveyedpersons of working agewas96.5% (moderate-67.8%, high -28.7%). Indicatorsof anxietyon average ingraduation"lowanxiety" were as follows:for men-3.4%among women-3.5%; "Moderateanxiety", respectively 69.2% and65.7% in terms of "high anxiety", respectively, 27.4%and29.1%. It should be notedthat high levels oftrait anxietywas significantlymore common amongrural residents(p <0.05). For example,one in threeof every fourvillagersandtownspeoplehave highRT.Dependingon the age ofthe highest frequencyof highradiotherapywas registered in the age of 30-39 years, moderate and lowLT -in20-29 years(p <0.01). According to our datarevealed that high levels of radiation therapy is typical for peoplewhose income is only enough for food and essential items(p <0.01).

Rates of depressionamong the rural populationwas71.5%(moderate-33.3%, high -38.2%) among the urban population-36.6%(moderate-28.3%, high -8.3%). Depending on the age of the highest frequency of the high degree of depressionwas noted in the age range of 20-29 and 50-59 years (28.6% and 28.4% of the total surveyed the appropriate age). On gender distribution, moderate and highlevels of depression observed in 61.6% of women and 42.8% men.

The analysis of therelationship between the level of depression the degree of improvement of housing and their subjective satisfaction showed that the worseliving conditions and their score, the higher the level of depression. Thus, the presence of moderate to high degree of depression was observed in 72.6% of respondents living in houses with no amenities, 65%-with partial conveniences, 37% - with all the amenities. Among those surveyed dissatisfied with their housing conditions, 69% reported the presence of depressive symptoms.

As a result of the correlation analysis there was a significant relationship between the degree of depression and the following factors: low socio-hygienic standard of living (p <0.01), financial situation(p <0.01), sex (p <0.05), the number of children(p <0.05), the degree of improvement of housing and satisfaction with them (p <0.01).

Depending on the studyof lipidmetabolismofanxiety anddepression inpersons surveyedhad some peculiarities. For example, workers in the industrial sector, depending on the anxiety was a trend towards an increase in the levels of total cholesterol and atherogenic LDL fraction. A statistically significant decrease in HDL-Cwere found in the group of mild depression.

Statistically significant increase in bloodlipid metabolism (triglycerides, LDL, VLDL and atherogenic factor, respectively) was found in the rural population with moderate anxiety. The high degree of anxiety combines a significant increase in the fraction of atherogenic LDL-C (Figure 1).

Dyslipidemiadependenceon the degree ofdepression amongvillagerscharacterizedstatistically significantincrease intriglycerides, LDL cholesterolandatherogenic factorin patients with highdepression(Figure 2).

Correlation analysis revealed a significant correlation between depression and cholesterol levels (ρ <0,05), LDL cholesterol (ρ <0,01), a the rogenic factor (ρ <0,05) from the villagers.

Our resultsdo not contradict thedata in the literaturethat theeconomic transformations taking place in the country, had a negative impacton the psycho-emotional state of the entire population, which led to an increase incardiovascular diseases, diseases associated with disturbed of lipid metabolism [2, 11].

Thus, low socio-hygienic standard of livinghas a significant effect on the psycho-emotional state of the population and contributes to the disruption of lipid metabolism. Currently, due to the above factors, this problem is more acute for able-bodied people in rural areas of the Republic of Sakha (Yakutia).

According to the results of the questionnaire revealed that not consume alcoholin rural areas- 42%, urban - 15%; use on holidays in the country side-55% of the city-71%; often used in the country side- 3%, the city-14%.

Statistically significant increase in the level of atherogenic lipid fractions depending on the consumption of alcohol was found in persons living in rural areas and regular drinkers (Table 2). Atherogenic factor they have exceeded the norm almost 2 times. In the group of urban dwellers significant abnormalities in lipid metabolism were found. It should be noted that people who regularly consume alcohol, there was a trend toward increased levels of HDL-C. It should be noted that research AN Klimov, NG Nikulcheva (1999) "alcoholic HDL" lose their functional properties, that is, do not participate in the reverse transport of free cholesterol [8].

Despite the fact that alcohol consumption in rural areas less frequently compared to urban areas is observed in the indigenous population expressed disturbances of lipid metabolism in individuals who consume alcohol. According to research Kershengolts BM et al. (2000), the indigenous population of Yakutia in 1.7-2.4 times lower resistance to alcohol compared with the Caucasoid, due to a decrease in the body's ability to oxidize ethanol without

formation of elevated concentrations of acetaldehyde due to phenotypic features isozyme spectra of alcohol dehydrogenases (ADH) and aldehyde dehydrogenase (AlDG) [7].

The most commonlysmokedin rural areas-35%in urban areas-29%. Analysis oflipid profileamong smokersand non-smokerssurveyedpersonsaccording to thesocio-hygienic living conditionsrevealed that dyslipidemia observed in smokers villagers. Thus, the atherogenic factor in smokers villagers exceeded the normal value by 1.7 times. In the group of smokers citizens dyslipidemia was less pronounced, which may be due to eating patternalien population (frequent consumption of vegetables, fruits) (Table 3).

Correlation analysis revealed significant association of lipidmetabolism with smoking and alcohol consumption. Triglyceride levels depended on smoking (ρ < 0,05) and alcohol consumption (ρ < 0,01). Atherogenic lipid fraction VLDL dependent on alcohol and smoking (ρ < 0,05).

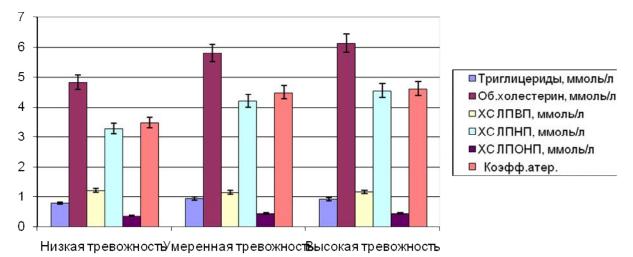
Thus, one of the reasons expressed by deviations from the normal values of lipid metabolism in the indigenous population is smoking and alcohol consumption, possibly due to the low standard of living.

CONCLUSION

The fight againstalcoholism among the population and the prevalence of smoking, especially among working-age population, should be comprehensive. Create jobsin rural areas with a decents alaryinc rease social standard of living, which will significantly improve the psycho-emotional state of the population of Yakutia.

REFERENCES

- Biokhemicheskie aspekty patologii cheloka na Severe [Biochemical aspects of human pathology in the North] / G.E. Mironova, Z.N. Krivoshapkina, L.D. Olesova [et al.] // Molekulyarno-kletochnye aspekty patologii cheloveka na Severe [Molecular and cellular aspects of human pathology in the North]. - Yakutsk, 2007. - P. 5 - 7.
- 2. Velichkovskii B.T. Social'nyi stress, trudovaja motivacija i zdorov'e [Social stress, work motivationand health]. Jakutskii medicinskii zhurnal, 2006, Vol. 3, PP. 44 52.
- 3. Gafarov V.V., Pak V.A., Gagulin I.V. et al. Lichnostnaja trevozhnost' i ishemicheskaja bolezn' serdca [Trait anxietyand ischemic heart disease]. Terapevticheskii Arhiv, 2005, Vol. 12, PP. 25 29.
- 4. Derjapa N.R., Rjabinin I.F. Adaptacija cheloveka v poljarnyh raionah zemli [Human adaptationin the polar regionsof the earth]. L.: Medicina, 1977, 294 p.
- 5. Egorova A.G., Krivoshapkina Z.N., Matveeva N.P. et al. Psihoyemocional'nye faktory i ih svjaz' s dislipidemiei u trudosposobnogo naselenija [Psycho-emotionalfactorsand their association withdyslipidemia inthe working age population]. Jakutskii medicinskii zhurnal, 2009, Vol. 4. PP. 57 60.
- 6. Egorova A.G., Sofronova S.I. Mediko-social'nye aspekty zdorov'ja sel'skogo trudosposobnogo naselenija v uslovijah Krainego Severa [Medical andsocial aspects ofhealth of the ruralworking populationin the Far North]. Jakutskii medicinskii zhurnal, 2007, Vol. 3, PP. 9 11.
- 7. Egorova A.G., Romanova A.N., Jakovlev R.V. Vlijanie uslovii i obraza zhizni na formirovanie boleznei sistemy krovoobrashenija u trudosposobnogo naselenija [Influence of conditionsand lifestyleon the formation ofdiseasesof the circulatory systeminthe working age population]. Jakutskii medicinskii zhurnal, 2009, Vol. 3 (27), PP 45 47.
- 8. Kershengol'c B.M., Kolosova O.N., Krivogornicyna E.A. Fiziologo-biohimicheskie mehanizmy formirovanija yetnogeneticheskih i yekologicheskih osobennostei alkogol'nyh patologii v uslovijah severa i ih vlijanie na obshuyu zabolevaemost' [Physiological and biochemicalmechanisms ofethnogeneticandecological featuresof alcoholicpathology in thenorthand theirimpact on the overallincidence]. Vestnik RUDN, serija Medicina, 2000, Vol. 2, PP. 106 115.



- 9. Klimov A.N., Nikul'cheva N.G. Obmen lipidov i lipoproteidov i ego narushenija [Exchangeof lipids andlipoproteinsand its disorders]. SPb.: Piter Kom, 1999, 512 p.
- 10. Mironova G.E. Krivoshapkina Z.N., Olesova L.D. et al. Biohimicheskie aspekty patologii cheloveka na Severe [Biochemical aspects of human pathology in the North] Molekuljarno-kletochnye aspekty patologii cheloveka na Severe: materialy mezhregionj. nauch.-prakt. [Molecular and cellular aspects of human pathology in the North: Mezhregion materials. scientific-practical. conf.]. Yakutsk, 2007, PP. 5 7.
- 11. Panin L. E. Yenergeticheskie aspekty adaptacii [Energy aspects ofadaptation]. L.: Medicina, 1978, 191 p.
- 12. Panin E.L., Usenko G.A. Trevozhnost', adaptacija i donozologicheskaja dispanserizacija [Anxiety,adaptation andpreclinicalmedical examination]. Novosibirsk, 2004, 315 p.
- 13. Panin L.E. Obmen lipoproteinov i ateroskleroz [Lipoprotein metabolismand atherosclerosis]. Byulleten' SO RAMN, 2006, Vol. 2 (120), PP. 15 22.
- 14. Hasnulin V.I. Vvedenie v poljarnuyu medicinu [Introduction toPolar Medicine]. Novosibirsk: SO RAMN, 1998, 337 p.
- 15. Horst A. Molekuljarnye osnovy patogeneza boleznei [Molecular basisof the pathogenesis ofdiseases]. M.: Medicina, 1982, 456 p.
- 16. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use the preparative ultracentrifuge. Clinical chemistry, 1972, Vol. 18, PP. 499 502.

F

Lipid metabolism in he working age population (mmol / L)

Lipid metabolism	Village	Town	ρ
erides	0,94±0,05	1,08±0,05	< 0,01
Total cholesterol	5,89±0,11	6,27±0,12	< 0,01
HDL-Chol	1,15±0,04	1,65±0,04	< 0,01
LDL- Chol	4,25±0,12	4,08±0,09	< 0,05
VLDL - Chol	0,44±0,03	0,50±0,03	-
Atherogenic factor	4,49±0,21	2,84±0,10	< 0,01

igure 1. Dependence of thelipid metabolismofanxiety inruralnasleniya Yakutia

Низкаятревожность - Lowanxiety

Умеренная тревожность - Moderateanxiety

Высокая тревожность - Highanxiety

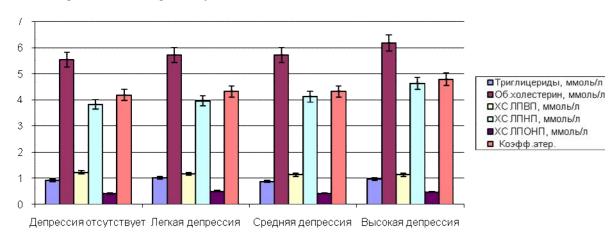


Figure 2. Dependence of the lipid metabolism of depression inrural population of Yakutia

Депрессияотсутствует - No depression

Легкая депрессия – Milddepression

Средняя депрессия – Averagedepression

Высокая депрессия - Highdepression

Table 2 Changes inlipid metabolism, depending on the alcohol (mmol/L)

Lipid metabolism	Village		Town	
	do not use	use	do not use	use
		regularly		regularly
erides	0,84±0,05	1,17±0,16**	1,17±0,15	1,28±0,14
Total cholesterol	5,74±0,14	6,27±0,14**	5,99±0,28	6,56±0,30
HDL-Chol	1,14±0,04	1,17±0,08	1,52±0,09	1,59±0,09
LDL- Chol	4,11±0,15	4,57±0,16**	4,05±0,23	4,23±0,26
VLDL - Chol	$0,40\pm0,03$	0,53±0,08*	0,53±0,07	0,58±0,07
Atherogenic factor	4,31±0,23	4,93±0,45 (x)	2,73±0,25	3,09±0,29

Note: * - ρ < 0,05; ** - ρ < 0,01; (*) betweendrink - ρ < 0,01.

 $\label{eq:Table 3} Table \ 3$ Changes inlipid metabolismdepending onsmoking in the working age population $(mmol\ /\ L)$

Lipid metabolism	Village		Town	
	non-smoking	smoking	non-smoking	smoking
erides	0,84±0,04	1,31±0,21** (^x)	0,95±0,06	1,29±0,89**
Total cholesterol	5,93±0,13	5,80±0,23	6,09±0,15	6,44±0,17
HDL-Chol	1,18±0,04	0,99±0,07**	1,74±0,05	1,62±0,07
LDL- Chol	4,26±0,13	4,20±0,23	3,96±0,13	4,14±0,14
VLDL - Chol	0,39±0,02	0,59±0,09*	0,43±0,03	0,62±0,05**
Atherogenic factor	4,28±0,23	5,24±0,46 (^x)	2,63±0,13	3,05±0,18

Note: * - ρ < 0,05; ** - ρ < 0,01; (*) between smokers- ρ < 0,01.

Authors:

FSBSE YSCCMP: KRIVOSHAPKINA Zoya Nikolaevna —cand. biol. science, senior researcher, zoyakriv@mail.ru, EGOROVA Aitalina Grigorevna —cand. med. sciences, senior researcher, aitalina@mail.ru, ALEKSEEVA Zynaida Nikolaevna —senior researcher, SEMENOVA Evgeniya Ivanovna —cand. biol. sciences, associate researcher, OLESOVA LjubovDygynovna —cand. biol. sciences, head of thelab., oles59@mail.ru.