The authors

- SOLOVYEV AISEN VASILIEVICH Junior researcher, Laboratory of Molecular Biology Institute of Natural Sciences, Federal State Autonomous Educational Institution of Higher Education "North-Eastern Federal University M.K. Ammosov". Address: 677010, Sakha Republic, Yakutsk, Kulakovsky st. 46. Phone: 8-(914) 300-42-65, e-mail: nelloann@gmail.com
- BARASHKOV NIKOLAI ALEKSEEVICH

 Candidate of Biological Sciences, Head of laboratory of Molecular genetics, Federal State Budgetary Scientific Institution "Yakutsk Scientific Center of Complex Medical Problems". Address: 677010, Sakha Republic, Yakutsk, Sergelyakhskoye Shosse, 4. Phone: 8-(4112) 32-19-81; Email: barashkov2004@mail.ru
- SAVVINOVA KIUNNIAI EGOROVNA Student, Department of Biology, Institute of Natural Sciences, Federal State Autonomous Educational Institution of Higher Education "North-Eastern Federal University. M.K. Ammosov". Address: 677010, Sakha Republic, Yakutsk, Kulakovsky st. 48. Phone: 8-(4112) 49-68-42, e-mail: nelloann@mail.ru
- GOTOVTSEV NYURGUN NAUMOVICH

 Scientific Researcher, Laboratory of Molecular Genetics, Federal State Budgetary
 Scientific Institution "Yakut Science Center of Complex Medical Problems". Address: 677010, Sakha Republic, Yakutsk, Sergelyakhskoye Shosse, 4. Phone: 8-(914)106-20-15, e-mail: donzcrew@mail.ru
- TERUTIN FEDOR MIKHAILOVICH Candidate of Medicine Sciences, Senior Researcher of Laboratory of Molecular Biology Institute of Natural Sciences, Federal

- State Autonomous Educational Institution of Higher Education "North-Eastern Federal University M.K. Ammosov". Address: 677010, Sakha Republic, Yakutsk, Kulakovsky st. 46., e-mail: rest26@mail.ru
- PSHENNIKOVA VERA GENNADIEVNA

 Scientific Researcher, Laboratory of Molecular Genetics, Federal State Budgetary
 Scientific Institution "Yakutsk Scientific Center for Complex Medical Problems", postgraduate student of NEFU. Address: 677010, Sakha Republic, Yakutsk, Sergelyakhskoye Shosse, 4. Phone: 8-(4112) 32-19-81, e-mail: pshennikovavera@mail.ru
- ROMANOV GEORGII PROKOPIEVICH

 Engineer, Laboratory of Molecular Biology Institute of Natural Sciences, Federal State Autonomous Educational Institution of Higher Education "North-Eastern Federal University M.K. Ammosov". Address: 677010, Sakha Republic, Yakutsk, Kulakovsky st. 46., e-mail: gpromanov@gmail.com
- RAFAILOV ADUM MIKHAILOVICH Candidate of Biological Sciences, Associate Professor of Department of Biology, Institute of Natural Sciences, Federal State Autonomous Educational Institution of Higher Education "North-Eastern Federal University. M.K. Ammosov ". Address: 677010, Sakha Republic, Yakutsk, Kulakovsky st. 48. Phone: 8-(4112) 49-68-42, e-mail: archinay@mail.ru
- SAZONOV NIKOLAY NIKITICH Doctor of Biological Sciences, Professor of Department of Biology, Institute of Natural Sciences, Federal State Autonomous Educational Institution of Higher Education "North-Eastern Federal University. M.K. Ammosov ". Address: 677010, Sakha Re-

- public, Yakutsk, Kulakovsky st. 48. Phone: 8-(4112) 49-68-42, e-mail: saznikol@mail. ru
- 10.DZHEMILEVA LILYA USEINOVNA Doctor of Medicine Sciences, Senior Researcher of Laboratory of Human Molecular Genetics, Federal State Budgetary Institute of Science Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences. Address: 450054, Yakutsk, Prospect of October 71. Phone: 8-(3472) 35-60-88, e-mail: dzhemilev@mail.ru
- 11. POSUKH OLGA LEONIDOVNA Candidate of Biological Sciences, Senior Researcher of Laboratory of Human Molecular Genetics, The Federal Research Center Institute Of Cytology And Genetics The Siberian Branch Of The Russian Academy Of Sciences. Address: 630090, Novosibirsk, Lavrentiev avenue, 10. Phone: 8-(383)363-49-44, e-mail: posukh@bionet.nsc.ru
- 12.KHUSNUTDINOVA ELZA KAMILEVNA Doctor of biological sciences, Professor, Director of the Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences. Address: 450054, Ufa, Prospect of October, 71. Phone: 8-(3472) 35-60-88, e-mail: elkh@anrb.ru
- 13.FEDOROVA SARDANA ARKADIEVNA Doctor of biological sciences, Head of the Research Laboratory of Molecular Biology Institute of Natural Sciences, Federal State Autonomous Educational Institution of Higher Education "North-Eastern Federal University M.K. Ammosov". Address: 677010, Sakha Republic, Yakutsk, Kulakovsky st. 46., e-mail: sardaanafedorova@mail.ru.

N.I. Pavlova, N.A. Solovyeva, A.T. Dyakonova, N.P. Filippova, V.V. Dodokhov, M.A. Varlamova, Kh.A. Kurtanov

A STUDY OF THE POLYMORPHISM RS9939609
OF THE FTO GENE AND RS738409 OF THE
PNPLA3 GENE AS RISK FACTORS FOR THE
DEVELOPMENT OF NAFLD IN THE YAKUT
POPULATION OF TYPE 2 DIABETES MELLITUS

DOI 10.25789/YMJ.2018.63.05

ABSTRACT

In order to study the frequency distribution of the polymorphism alleles rs9939609 of the *FTO* gene and polymorphism rs738409 of the *PNPLA3* gene among the Yakuts, 132 DNA samples of patients with type 2 diabetes and 70 DNA samples of healthy volunteers were tested.

The study of the frequency distribution of the polymorphism alleles rs9939609 of the FTO gene and polymorphism rs738409 of the PNPLA3 gene in both groups showed no significant differences. Analysis of the frequency distribution of alleles and genotypes of the polymorphic variant of the FTO gene (rs9939609) in the group of patients with type 2 diabetes and healthy revealed a predominance of the T allele and a homozygous genotype of TT, except for a group of practically healthy men, which despite the prevalence of the T allele was characterized by the highest level of the heterozygous genotype AT. When analyzing the frequency distribution of the alleles and genotypes of the polymorphic version of the PNPLA3 gene (rs738409), the allele G and the homozygous genotype GG prevailed in both groups. In the men and both groups studied, the G allele significantly prevailed over the C allele (p <0.05).

Keywords: FTO gene, adiponadine gene, type 2 diabetes mellitus, NAFLD, overweight, Yakuts.

Introduction

Currently, obesity is an actual problem, which is associated with its progressive

spread and the severity of complications, which often cause the death of patients at a young age. To date, according to the

World Health Organization in the world - 39% of adults are overweight, and 13% are obese. In Russia, among the able-

bodied population, 25% are overweight and 30% obese [4].

Increased consumption of food, with the advantage of fats and carbohydrates, leads to the accumulation of excess weight and a violation of the natural physiological transformation of energy. Metabolic disorders in obese people with overeating lead to a relative insufficiency of insulin. As a result, type 2 diabetes is formed, which further exacerbates obesity. Genetic predisposition is one of the important factors in the pathogenesis of obesity [2]. It is estimated that 40-70% of the dispersion of the body mass index (BMI) can be attributed to direct or indirect genetic factors [8].

search The full-genomic for associations (GWAS) showed that the single nucleotide polymorphism (SNP) rs9939609, located in the first intron of the FTO gene (Fat Mass and Obesity Associated Gene), associated with a set of fat mass was significantly associated with obesity in various ethnic populations in both children and in adults [11]. The FTO gene encodes one of the lipolysis regulators, is involved in the control of adipocyte differentiation, energy homeostasis, leptin-independent appetite control. According to the results of previous studies, allele A of the FTO gene is associated with reduced lipolysis, a violation of appetite control, a lack of satiety after adequate food intake. The phenotypic manifestation of the FTO gene allele A is overweight, obesity due to overeating, which in turn is one of the common risk factors for the development of non-alcoholic fatty liver disease (NAFLD). Epidemiological data indicate a frequent combination of type 2 diabetes and NAZHBP characterized by the accumulation of lipids both in the hepatocytes themselves and in the intercellular space [1]. Patients with type 2 diabetes are characterized by insulin resistance, often obese, have dyslipidemia and increased activity of hepatic enzymes, they tend to accumulate fat in the liver regardless of BMI values, which causes a higher risk of developing severe liver pathology compared to patients not suffering from CD [7]. NAFLD is considered as an important medical and social problem because it includes a range of clinical and morphological concepts: liver steatosis, non-alcoholic steatohepatitis (NASH), which leads to the development of fibrosis and cirrhosis of the liver.

Recently, there have been studies that prove hereditary mechanisms for the development of NAFLD. Genetic risk factors for the development and progression of NAFLD have been found.

The involvement of the PNPLA3 gene in the formation of cirrhosis and primary liver cancer has been proven. Polymorphism of this gene is a predictor of the progressing course of NAFLD and the main risk factor for the transformation of NAFLD into cirrhosis. Molecular genetic studies have shown that the PNPLA3 gene located on the long arm of chromosome 22q13.31 is expressed in the membranes of hepatocytes and is responsible for intrahepatic lipid metabolism by coding the synthesis of adiponuclein, a protein regulating the activity of triacylglycerol lipase in adipocytes [10]. The most significant polymorphism in the PNPLA3 gene is I148M (rs738409). Polymorphism 1148M is the replacement of cytosine by quanine, which leads to a change in the amino acid isoleucine to methionine at position 148. This replacement causes a violation of the mechanism of lipid metabolism in the liver.

The purpose of our study was to study the frequency distribution of polymorphism alleles rs9939609 the FTO gene and the polymorphism rs738409 of the PNPLA3 gene among people suffering from type 2 diabetes of the Yakut population.

Materials and methods of research

The experimental part of the genotyping of polymorphism rs9939609 of the FTO gene and the polymorphism rs738409 of the PNPLA3 gene was carried out in the laboratory of hereditary pathology of the department of molecular genetics of the Yakutsk Scientific Center of Complex Medical Problems. DNA samples from the YMC KMB biomaterial collection using the UMU "Genome of Yakutia" (registration No. USU_507512) were used for the study. Tested 132 DNA samples of patients diagnosed with type 2 diabetes, 91 of which belonged to women, 41 to men. The average age of participants in the study was 58.8 ± 0.43 years. As a comparison group, a sample was collected with normal BMI and no diabetes mellitus (n = 70) from 22 men and 48 women, whose mean age was 27.2 ± 0.47 years. All participants in the study on ethnicity were Yakuts and lived on the territory of the RS (Y). The study

was conducted with the written consent of the participants.

The criteria for inclusion in the study were: the absence of liver damage by chronic viral hepatitis; all subjects were excluded: autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, hereditary hemochromatosis, Wilson-Konovalov's disease, and lack of alcohol abuse (> 30 g / l).

For PCR and RFLP analysis, genomic DNA samples were isolated from the whole blood of patients by a standard phenol-chloroform method. Single nucleotide polymorphisms (SNP) were determined by polymerase chain reaction (PCR).

To carry out PCR, specific primers were used by Biotech-Industry Ltd., Moscow:

rs9939609 5'-TGGGCCTGAAGTCCGAGGGT-3 R: rs9939609 CCGACACCAGTGCCCTGCAG-3';

rs738409 F: 5'-AACTGGCTCTTGAAT **GAAATAGGATTCAGA-3**'

rs738409 R: 5'-AGAGTAACAGAGAC TATCCAAGTGCAGTAC-3'

After PCR, the amplification of rs9939609 of the FTO gene was subjected to restriction with the use of Zrml endonuclease (SibEnzyme LLC, Novosibirsk) for 3 hours at 37 ° C. The detection of RFLP products was carried out by horizontal electrophoresis in a 4% agarose gel plate with the addition of ethidium bromide-specific intercalating fluorescent DNA (RNA) dye-using a standard tris-acetate buffer at a field strength of ~ 20 V / cm for 30 minutes (figure - 1).

The amplification of rs738409 of the PNPLA3 gene was subjected to restriction with the use of endonuclease BstF5 I (SibEnzyme LLC, Novosibirsk) for 3 hours at 65 ° C. The detection of RFLP products was carried out by horizontal electrophoresis in a 4% agarose gel plate with the addition of ethidium bromidespecific intercalating fluorescent DNA (RNA) dye-using a standard tris-acetate buffer at a field strength of ~ 20 V / cm for 30 minutes (figure - 2).

Interpretation of the results

Table 1

PCR conditions

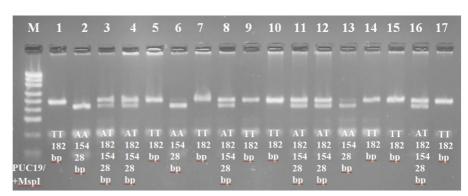
Gene	Ampli- ficate	Length of restriction fragments	PCR conditions
FTO	182 b.p.	AA – 154, 28 AT – 154, 28, 182 TT – 182	1. 95 °C – 4 min 2. (94 °C – 30 sec; 58 °C – 30 sec; 72 °C – 1 min)*35 3. 72°C – 10 min
PNPLA3	333 b.p.	CC: 200 и 133 b.p. GC: 333, 200 и 133 b.p. GG: 333 b.p	1. 95 °C – 5 min 2. (94 °C – 30 sec; 66 °C – 30 sec; 72 °C – 40 sec)*37 3. 72 °C – 5 min

genotyping was performed on the basis of different patterns of bands: CC genotype 200 and 133 bp, CG genotype - 333, 200 and 133 bp, GG genotype -333 bp.

Results and discussion:

Analysis of the frequency distribution of alleles and genotypes of the polymorphic version of the FTO gene (rs9939609) in the group of patients with type 2 diabetes and healthy did not reveal significant differences, in both groups allele T (p = 0.252) and homozygous genotype TT (p = 0.820) prevailed, practically healthy men, which despite the predominance of the T allele (p = 0.08) was characterized by the highest level of heterozygous AT genotype (Ho = 0.546).

The results of the analysis of the frequency distribution of alleles and genotypes of polymorphism rs9939609 of the FTO gene are presented in Table 2.


The analysis of BMI indices, characterizing the correspondence of the body weight of a person and its growth, showed that among patients with type 2 diabetes (n = 122), overweight (n = 33; 27%) and obesity prevailed (n = 81, 66.4%). Compliance with normal BMI was noted in only 8 patients (6.6%).

The results of analysis of the frequency distribution of alleles and genotypes of polymorphism of the FTO gene (rs9939609) depending on the BMI parameters are presented in Table 3.

Table 3 shows that, regardless of gender, among patients with type 2 diabetes having an overweight and obesity, the allele T (p = 0.199) prevailed. Analysis of the frequency distribution of genotypes showed the following, in the overweight group both in women and men, the heterozygous genotype of AT prevailed (p = 0.754), whereas in obese patients the homozygous genotype of TT (p = 0.844) was more prevalent. In studies Shilina NM. (2017), in contrast, notes in women 27 years and older the connection with obesity in carriers of genotypes of AT + AA in comparison with carriers of the genotype of TT [5].

Analysis of the allele and genotype distribution of the polymorphic variant of the PNPLA3 gene (rs738409) in the group of patients with type 2 diabetes and healthy did not reveal significant differences, in both groups allele G (p <0.001) and homozygous genotype GG prevailed (Table 4). In the men and both groups studied, the G allele significantly prevailed over the C allele (p <0.05).

According to the data of the "1000 genomes" project, the frequency of distribution of the allele G of the PNPLA3 gene (rs738409) is characterized by heterogeneity. When comparing

Fig. 1 Electrophoregram of the amplification product of the *FTO* gene site in a 4% agarose gel. Note. Tracks No. 1, 5, 7, 9, 10, 14, 15 and 17 are the genotype of TT; № 2, 6 and 13 - genotype AA; № 3, 4, 8, 11, 12 and 16 - the genotype of AT; M - marker PUC19 / + Msp I. Bp - base pairs.

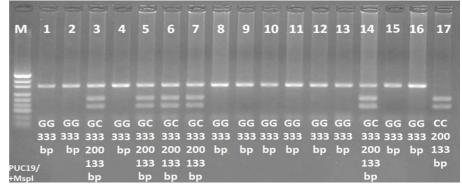


Fig. 2 Electrophoregram of the amplification product of the *PNPLA3* gene site in a 4% agarose gel.

Note. Tracks № 17 - genotype CC, № 3, 5, 6, 7, 14 - genotype GC, № 1, 2, 4, 8, 9, 10, 11, 12, 13, 15, 16 - genotype of GG. M - marker PUC19 / + Msp I. bp - base pairs.

Table 2

Frequency distribution of alleles and genotypes of polymorphism rs9939609 of the FTO gene in the group of patients with type 2 diabetes and healthy individuals

n			Genotype, %			Allele		Н	Н	X^2	
			TT	AT	AA	T	Α	110	11 _e	Λ	р
Patients with diabetes 2											
Wo-	91	Н	52,8	42,9	4,4	0,742	0,258	0,429	0,383	1,282	0,258
men		Ο	55,1	38,3	6,7						
Mon's	41	Н	48,8	39,0	12,2	0,683	0,317	0,390	0,433	0,401	0,527
Men's	41		46,6	43,3	10,1						
Healthy											
Wo-	48	Н	58,3	37,5	4,2	0,771	0,229	0,375	0,353	0,180	0.67
men		О	59,4	35,3	5,3					0,180	0,67
Men's	22	H 45,5 54,6 0,	0,0	0.727	0,273	0.546	0.207	2.00	0.00		
			52,9	39,7	7,4	0,727	0,273	0,546	0,397	3,09	0,08

Note: n-quantity; O - observable; E is the expected; X2 is the chi-square; Ho -observed heterozygosity; He -expected heterozygosity.

Table 3

Frequency distribution of alleles and genotypes of the FTO gene (rs9939609) depending on BMI and sex in the group of patients with type 2 diabetes

ИМТ		Genotype, %		Allele		Н	Н	X^2	n	
YIIVI I		TT	AT	AA	T	A	110	11 _e	Λ	p
Women (n=79)										
Overweight (BMI ≥	0	36,8	52,6	10,5	0,632	0,368	0,526	0,465	0,326	0.568
25 кг/м2)	Е	39,9	46,5	13,6	0,032	0,308	0,320	0,403	0,320	0,508
Obesity (BMI≥ 30	0	51,7	45,0	3,3	0,742	0,258	0,450	0,383	1,824	0.177
кг/м2.)	Е	55,0	38,3	6,7	0,742	0,236	0,430	0,363	1,024	0,1//
Men's (n=35)										
Overweight (BMI ≥	О	28,6	64,3	7,1	0.607	0,393	0,643	0,477	1,691	0.193
25 кг/м2)	Е	36,9	47,7	15,4	0,607	0,393	0,043	0,4//	1,091	0,193
Obesity (BMI≥ 30	О	52,4	33,3	14,3	0,690	0,310	0,333	0.427	1.010	0.212
кг/м2.)	Е	47.7	42.7	9.6	0,090	0,310	0,555	0,427	1,018	0,313

Table 4

Distribution of frequencies of alleles and genotypes of polymorphism rs738409 of PNPLA3 gene in the group of patients with type 2 diabetes and healthy individuals

	n		Ge	notype	, %	Allele		H	H	X^2	n
	n		CC	CG	GG	C	G	Π_{g}	Π_{e}	Λ^{-}	p
Patients with diabetes 2											
Woman	91	О	8,8	33	58,2	0,253	0,747	0,33	0,378	1,473	0,225
Women		Е	6,4	37,8	55,8						
Men's	41	О	19,5	22	58,5	0,305	0,695	0,22	0,424	9,529	0,002
IVICIIS		Е	9,3	42,4	48,3						
Healthy											
Women	49	О	4,1	38,8	57,1	0,235	0,765	0,388	0,359	0,309	0,578
		Е	5,5	35,9	58,6					0,309	0,578
Men's	24	О	25,0	16,7	58,3	0,333	0,667	0,167	0,444	9,375	0,002
		Е	11,1	44,4	44,4					9,3/3	0,002

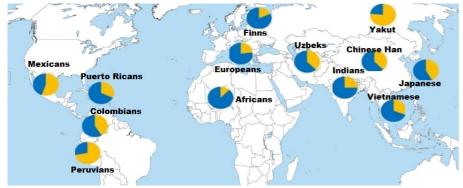


Fig. 3 Frequency of polymorphism rs738409 of the PNPLA3 gene in different populations.

frequencies among healthy patients with type 2 diabetes in different populations, the prevalence of G allele frequency in the Yakut population was established (Fig. 3).

In their studies of the Japanese population of patients with type 2 diabetes, M. Ueyama, N. Nishida (2015) and Kan H. et al. (2016), noted the high frequency of the G allele (48-48.8%) [12 , 13]. In studies among the European population of patients with type 2 diabetes, Jean-Michel Petit et al. (2010), the allele frequency G was - 29.6% [11]. According to Cox A.J. (2011), the lowest frequency of occurrence of the G allele (13.7%) at the GG genotype frequency was 1.5%, had a population of African American patients with type 2 diabetes

According to the researchers, the pathogenesis of NAFLD is played by the theory of two-stage lesion. At the first stage, against the background of visceral obesity and insulin resistance (IR) lipolysis increases, the concentration of free fatty acids (FFA) in the blood serum increases due to an increase in synthesis and inhibition of their oxidation in mitochondria with accumulation of triglycerides and a decrease in the excretion of fats by liver cells. So, there are conditions for the formation of fatty liver dystrophy - steatosis. At the same time, fatty hepatosis, regardless of the

cause, can contribute to high insulin levels due to reduced insulin clearance [3]. Despite the active study of the problem of NAFLD, absolute algorithms for the treatment of this disease have not been developed.

Conclusion

Today, the problem of NAFLD is very relevant and increasingly attracts the attention of researchers and practitioners.

The detection of the polymorphism markers of the PNPLA3 (rs738409) and FTO (rs9939609) genes associated with the development of NAFLD will allow the formation of risk groups with the goal of carrying out preventive and therapeutic activities.

Analysis of the frequency distribution of alleles and genotypes of the polymorphic version of the FTO gene (rs9939609) in the group of patients with type 2 diabetes and healthy did not reveal significant differences, in both groups allele T (p = 0.252) and homozygous genotype TT (p = 0.820) prevailed, practically healthy men, which despite the predominance of the T allele (p = 0.08) was characterized by the highest level of heterozygous AT genotype (Ho = 0.546).

When analyzing the frequency distribution of alleles and genotypes of the polymorphic version of the PNPLA3 gene (rs738409), there were no significant differences in the group of patients with type 2 diabetes and healthy, in both groups allele G (p <0.001) and homozygous genotype GG prevailed. In the men and both groups studied, the G allele significantly prevailed over the C allele (p <0.05).

Timely detection of risk factors maintenance NAFI D. appropriate preventive work, adequate pharmacotherapy will reduce insulin resistance, obesity, including abdominal, diabetes. incidence of arterial hypertension and atherosclerosis leading to coronary heart disease, and reduce mortality from cirrhosis and increase life expectancy of the population.

References

- 1. Biriukova E.V. Rodionova Saharnvi diabet 2-go tipa i nealkogol'naja zhirovaja bolezn' pecheni – bolezni sovremennosti [Diabetes mellitus type 2 and non-alcoholic fatty liver disease - diseases of the present] Medicinskij al'manah [Medical almanac]. 2017, № 6 (51), P.130-135.
- 2. Dedov I.I. Shestakova M.V. Vikulova O.K. Epidemiologiya sakharnogo diabeta v Rossiyskoy Federatsii: kliniko-statisticheskiy otchet po dannym Federalnogo registra sakharnogo diabeta [Epidemiology of diabetes mellitus in the Russian Federation: clinical and statistical report on the Federal Register of Diabetes Mellitus] Sakharnyy diabet [Diabetes]. 2017, №1, Vol. 20, P.13-41. doi: 10.14341/DM8664
- 3. Pashenceva A.V. Verbovoj A.F. Sharonova L.A. Insulinorezistentnosť v terapevticheskoj klinike [Insulin resistance in the therapeutic clinicl Ozhirenie i metabolism [Obesity and metabolism]. 2017, № 14(2), P. 9-17.
- 4. Razina A.O. Achkasov E.E. Runenko S.D. Ozhireniye: sovremennyy vzglyad na problem [Obesity: a modern view of the problem] Ozhireniye i metabolism [Obesity and metabolism]. 2016, № 13(1), P. 3-8. doi: 10.14341/OMET201613-8
- 5. Shilina N.M. [et al.] Fenotipicheskiye proyavleniya polimorfizma rs 9939609 gena FTO v diade mat-ditya. [Phenotypic manifestations of polymorphism rs 9939609 of the FTO gene in a mother-child dyad] Voprosy detskoy diyetologii [Questions of children's dietology]. 2017, № 15(4) , P. 14-20. doi: 10.20953/1727-5784-2017-4-14-20
- 6. Association of PNPLA3 SNP rs738409 with liver density in africanamericans with type 2 diabetes mellitus / AJ. Cox, MR. Wing, JJ. Carr, [et al.] // Diabetes & metabolism. - 2011. - Vol. 37, №5. - P.452-455. doi:10.1016/j.diabet.2011.05.001.
- 7. Costs and consequence associatiated with newer medications for glycemic control in type 2 diabetes / A. Sinha, M. Ragan, T. Hoerger [et al.] // Diabetes Care. - 2010. - Vol. 33.- P. 695-700.

- The genetics of obesity: practical implications. / J. Hebebrand [et al.] // Int J Obes Relat Metab Disord – 2001. - № 25. – P. 10–17
- Kan H. Influence of the rs738409 polymorphism in patatin-like phospholipase 3 on the treatment efficacy of non-alcoholic fatty liver disease with type 2 diabetes mellitus / H. Kan, H. Hyogo, H. Ochi, // Hepatol Res. 2016 Vol.46 E146 E153. doi: 10.1111/hepr.12552.
- 10.PNPLA3 I148M polymorphism and progressive liver disease / P. Dongiovanni [et al.] // World Journal of Gastroenterology. 2013. Vol. 19. №41. P. 6969-6978.
- 11. Association of FTO rs9939609 SNP with Obesity and Obesity- Associated Phenotypes in a North Indian Population / J. Prakash [et al.] // Oman Medical Journal 2016. Vol. 31, № 2. P. 99-106
- 12.Specifically PNPLA3-Mediated Accumulation of Liver Fat in Obese Patients with Type 2 Diabetes / J-M. Petit, B. Guiu, D.

- Masson, L. [et al.] // The Journal of Clinical Endocrinology & Metabolism. 2010 Vol. 95.– №12.– P.E430–E436 https://doi.org/10.1210/jc.2010-0814
- 13.The impact of PNPLA3 and JAZF1 on hepatocellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus/ M. Ueyama, N. Nishida, M. Korenaga [et al.] //J Gastroenterol. –2015.– Vol.51(4).–370-9. doi: 10.1007/s00535-015-1116-6. Epub 2015 Sep 3.

Information about authors:

- Pavlova Nadezhda Ivanovna PhD (Biology), leading researcher, head of the laboratory of hereditary pathology; doctor laboratory assistant of the Scientific Clinical Diagnostic Laboratory of the FGBOU VO Yakutsk State Agricultural Academy, email: solnishko_84@inbox.ru;
- Soloveva Natalia Alekseevna PhD, senior researcher, laboratoriy of population genetics; e-mail: sonata608@yandex.ru;

- Dyakonova Alexandra Timofeevna Jr. researcher, laboratory of hereditary pathology, e-mail: dyakonovaa@bk.ru);
- Filippova Natalia Pavlovna PhD (Biology), associate professor, scientific researcher, laboratory of population genetics, e-mail: inniah1970@list.ru:
- Dodokhov Vladimir Vladimirovich PhD (Biology), senior researcher, laboratory of hereditary pathology; Senior Lecturer of the Department of TOS ATF FGBOU VO Yakutsk State Agricultural Academy; (phone: 89248760599; e-mail: dodoxv@ mail.ru);
- Varlamova Marina Alekseevna researcher, laboratory of hereditary pathology e-mail: varlamova.m@yandex.ru;
- Kurtanov Khariton Alekseevich PhD, Chief Scientific Officer - Head of the Department of Molecular Genetics, e-mail: hariton kurtanov@mail.ru.

S.V. Tishkovets, Ya.G. Razuvaeva, A.G. Mondodoev, A.A. Toropova

ANTI-INFLAMMATORY ACTIVITY OF THE COMPLEX HERBAL REMEDY

DOI 10.25789/YMJ.2018.63.06

ABSTRACT

During experiments on white rats of the Wistar line, anti-inflammatory activity of the extract of dry complex herbal remedy (*Juglans regia L.* Rich ex Kimth., *Corylus avellana L.*, *Agrimonia eupatória L.*, *Bidens tripartita L.*, *Xanthium strumarium L.*, *Urtica dioica L. Lemna minor L.*, *Cichorium intybus L.*, *Onopordum acanthium L.*) was examined on models of acute exudative (carrageenan and formalin), chronic alterative and proliferative inflammation. It is found that phytoextract in doses of 100-300 mg/kg has antiexudative activity, reducing the exudation caused by phlogogenic agents. The tested extract has an anti-alterative effect, limiting the alteration of tissues with acetic acid and enhancing regenerative processes.

Keywords: complex remedy (Juglans regia L. Rich ex Kimth., Corylus avellana L., Agrimónia eupatória L., Bidens tripartita L., Xanthium strumarium L., Urtica dioica L. Lemna minor L., Cichorium intybus L., Onopordum acanthium L.), anti-inflammatory activity.

Introduction

Currently, hypothyroidism is one of the most common diseases of the endocrine system. According to epidemiological studies, the incidence of this disease in the population is about 2%; while in the group of women over 74 years old it reaches 21% [3]. Patients with hypothyroidism, against the decrease in the level of basal metabolism and anabolic processes in general, as well as the activation of free radical oxidation and the weakening of the body's antioxidant defense, show a slowdown in the regeneration of damaged tissues and recovery processes. Posttraumatic intoxication in turn aggravates disorders of thyroid regulation of intracellular metabolism [11].

To treat hypothyroidism, thyroid hormone preparations, drugs containing iodine, and preparations that affect the immune system (immunosuppressors and immunomodulators), as well as efferent therapy are used. Drug treatment methods for hypothyroidism, which are part of the scope of evidence-based

medicine, allow for achieving clinical results, while not always achieving the proper life quality for a particular patient, require compulsory medical supervision and often have side effects [5].

Of particular interest in the treatment of hypothyroidism are herbal remedies that, due to the synergism of biologically active substances, have systemic exposure on the body: normalize the level of hormones, manifest antioxidant, anti-inflammatory, psychotropic, cardioprotective and other actions, and thus contribute to delaying the administration of hormone replacement therapy or reducing the dose of hormones during its administration [4]. In the light of the development of personalized medicine, a complex herbal remedy consisting of: Juglans regia L. Rich ex Kimth., Corylus avellana L., Agrimonia eupatória Ldb, Bidens tripartita L., Xanthium strumarium L., Urtica dioica L. Lemna, L., Onopordum aconthium L is of interest. Earlier in animal experiments, it was found that this complex remedy exerts pronounced pharmacotherapeutic efficacy in experimental hypothyroidism, increasing the synthesis of thyroid hormones, peripheral conversion of fT4 to fT3, normalizing the cardiovascular parameters, increasing animal resistance to hypoxia [14].

The **study objective** was to evaluate the anti-inflammatory activity of the dry complex herbal remedy extract with thyroid-stimulating activity.

Study materials and methods

the experiments were performed on Wistar rats of both sexes with an initial mass of 180-190 g. The animals were kept in standard vivarium conditions with the same care and nutrition, light and temperature conditions in accordance with Order No. 708H of the Ministry of Health of the Russian Federation of August 23, 2010 "On Approval of Laboratory Practice Regulations". Experimental studies were carried out in accordance with the "Work code for using experimental animals" (Appendix to the Order of the Ministry of Health of the USSR No. 755 of 12.08.77) and "Rules adopted in the European Convention for the Protection